精英家教網 > 初中數學 > 題目詳情
如圖,E是正方形ABCD的邊CD延長線上的任意一點,CF⊥AE于點F,交AD于點H.求∠DHE的度數.
∵四邊形ABCD是正方形,
∴CD=AD,∠CDH=∠ADE=90°,
∵CF⊥AE,
∴∠AFH=90°,
∴∠HCD+∠CHD=∠AHF+∠DAE=90°
∵∠AHF=∠CHD,
∴∠DCH=∠DAE,
在△CDH和△ADE中
∠DCH=∠DAE
CD=AD
∠CDH=∠ADE

∴△CDH≌△ADE,
∴DH=DE,
∵∠HDE=90°,
∴∠DHE=∠DEH=45°.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

如圖,四邊形ABCD是正方形,CE=MN,∠MCE=35°,那么∠ANM等于______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:正方形ABCD,以AD為邊作等邊三角形ADE,求∠BEC的度數.(要求畫出圖形,再求解)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在正方形ABCD中,AC為對角線,E為AC上一點,連接EB、ED.延長BE交AD于F,當∠BED=120°時,則∠EFD=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點E,延長BC到點F,使CF=CE,連接DF,交BE的延長線于點G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數量關系?證明你的結論;
(3)若GE•GB=4-2
2
,求正方形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在△ABC中,AD⊥BC于點D,∠BAC=45°,BD=3,DC=2,求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖①,四邊形ABCD是正方形,點G是BC上任意一點,DE⊥AG于點E,BF⊥AG于點F.
(1)求證:DE-BF=EF;
(2)當點G為BC邊中點時,試探究線段EF與GF之間的數量關系,并說明理由;
(3)若點G為CB延長線上一點,其余條件不變.請你在圖②中畫出圖形,寫出此時DE、BF、EF之間的數量關系(不需要證明).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

請在6×6的正方形網格中,各畫出一個不同類型的特殊平行四邊形,并分別求出所畫特殊平行四邊形的面積.
(1)圖1:AB為特殊平行四邊形的一條邊;
(2)圖2:AB為特殊平行四邊形的一條對角線.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖所示,菱形ABCD中,對角線AC,BD相交于點O,若再補充一個條件能使菱形ABCD成為正方形,則這個條件是______.(只填一個條件即可,答案不唯一)

查看答案和解析>>

同步練習冊答案