【題目】如圖,拋物線 軸的一個交點(diǎn)A在點(diǎn)(-2,0)和(1,0)之間(包括這兩點(diǎn)),頂點(diǎn)C是矩形DEFG上(包括邊界和內(nèi)部)的一個動點(diǎn),則 的取值范圍是

【答案】- ≤a≤-
【解析】∵頂點(diǎn)C是矩形DEFG上(包括邊界和內(nèi)部)的一個動點(diǎn),

∴當(dāng)頂點(diǎn)C與D點(diǎn)重合,頂點(diǎn)坐標(biāo)為(1,3),則拋物線解析式y(tǒng)=a(x-1)2+3,

,解得- ≤a≤-

當(dāng)頂點(diǎn)C與F點(diǎn)重合,頂點(diǎn)坐標(biāo)為(3,2),則拋物線解析式y(tǒng)=a(x-3)2+2,

,解得- ≤a≤- ;

∵頂點(diǎn)可以在矩形內(nèi)部,

∴- ≤a≤-

【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)圖象的平移的相關(guān)知識可以得到問題的答案,需要掌握平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對x軸左加右減;對y軸上加下減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).

1)寫出點(diǎn)A、B的坐標(biāo):A   ,   )、B   ,   );

2)求△ABC的面積;

3)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△ABC′,畫出△ABC′,寫出A′、B′、C′三個點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,適宜采用全面調(diào)查(普查)方式的是( )

A. 對我市市民實(shí)施低碳生活情況的調(diào)查

B. 對我國首架大型民用飛機(jī)零部件的檢查

C. 對全國中學(xué)生心理健康現(xiàn)狀的調(diào)查

D. 對市場上的冰淇淋質(zhì)量的調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你能找出規(guī)律嗎?

1)計(jì)算:= , = ,= =

2)請按找到的規(guī)律計(jì)算:;

3)已知:a=,b=,則= (用含ab的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.若AC=6,AB=10,則⊙O的半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由個同樣大小的小正方體搭成的物體.

1)請畫陰影分別表示從正面、上面觀察得到的平面圖形的示意圖;

2)分別從正面、上面觀察這個圖形,得到的平面圖形不變的情況下,你認(rèn)為最多還可以添加 個小正方體.

從正面看 從上面看

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:①過一點(diǎn)有且只有一條直線與已知直線平行;②過一點(diǎn)有且只有一條直線與已知直線垂直;③垂直于同一直線的兩條直線互相平行;④平行于同一直線的兩條直線互相平行;⑤兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線互相平行;⑥連結(jié)、兩點(diǎn)的線段就是兩點(diǎn)之間的距離,其中正確的有(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用若干個形狀、大小完全相同的矩形紙片圍成正方形,4個矩形紙片圍成如圖①所示的正方形,其陰影部分的面積為12;8個矩形紙片圍成如圖②所示的正方形,其陰影部分的面積為8;12個矩形紙片圍成如圖③所示的正方形,其陰影部分的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,BC上的一點(diǎn),以AD為邊作,使

1)直接用含的式子表示的度數(shù)是_______________;

2)以為邊作平行四邊形;

①如圖2,若點(diǎn)F恰好落在DE上,試判斷線段BD與線段CD的長度是否相等,并說明理由.

②如圖3,若點(diǎn)F落在是DE上,且,求線段CF的長(直接寫出結(jié)果,不說明理由).

查看答案和解析>>

同步練習(xí)冊答案