【題目】在一個(gè)不透明的袋子中放有除顏色外完全相同的5個(gè)小球,其中3個(gè)紅球,2個(gè)白球,一次從中隨機(jī)摸出兩個(gè)球均為白球的概率為__
【答案】
【解析】
首先根據(jù)題意列表,然后求得所有等可能的結(jié)果與摸到兩個(gè)白球的情況,再利用概率公式即可求得答案.
解:列表得:
紅球1 | 紅球2 | 紅球3 | 白球1 | 白球2 | |
紅球1 | (紅1,紅2) | (紅1,紅3) | (紅1,白1) | (紅1,白2) | |
紅球2 | (紅1,紅2) | (紅2,紅3) | (紅2,白1) | (紅2,白2) | |
紅球3 | (紅1,紅3) | (紅3,紅2) | (紅3,白1) | (紅3,白2) | |
白球1 | (紅1,白1) | (紅2,白1) | (紅3,白1) | (白1,白2) | |
白球2 | (紅1,白2) | (紅2,白2) | (紅2,白2) | (白1,白2) |
∵共有20種等可能的結(jié)果,摸出兩個(gè)球均為白球的有2種結(jié)果,
所以摸出兩個(gè)球均為白球的概率為=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:
閱讀時(shí)間 (小時(shí)) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說法正確的是( 。
A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2008年實(shí)施國(guó)家知識(shí)產(chǎn)權(quán)戰(zhàn)略以來,我國(guó)具有獨(dú)立知識(shí)產(chǎn)權(quán)的發(fā)明專利日益增多.下圖顯示了2010﹣2013年我國(guó)發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重.根據(jù)統(tǒng)計(jì)圖提供的信息,下列說法不合理的是( 。
A. 統(tǒng)計(jì)圖顯示了2010﹣2013年我國(guó)發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重的情況
B. 我國(guó)發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重,由2010年的19.7%上升至2013年的32.1%
C. 2011年我國(guó)發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重是28%
D. 2010﹣2013年我國(guó)發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重逐年增長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△OAB中,OA=OB,⊙O經(jīng)過AB的中點(diǎn)C,與OB交于點(diǎn)D,且與BO的延長(zhǎng)線交于點(diǎn)E,連接EC,CD.
(1)試判斷AB與⊙O的位置關(guān)系,并加以證明;
(2)若tanE=,⊙O的半徑為3,求OA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在自習(xí)課上,小明拿來如下框的一道題目(原問題)和合作學(xué)習(xí)小組的同學(xué)們交流.
如圖1,已知△ABC,∠ACB=90°,∠ABC=45°,分別以AB,BC為邊向外作△ABD與△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點(diǎn)F.探究線段DF與EF的數(shù)量關(guān)系.
小紅同學(xué)的思路是:過點(diǎn)D作DG⊥AB于點(diǎn)G,構(gòu)造全等三角形,通過推理使問題得解.
小華同學(xué)說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.
請(qǐng)你參考小明同學(xué)的思路,探究并解決以下問題:
(1)寫出原問題中DF與EF的數(shù)量關(guān)系為 .
(2)如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請(qǐng)寫出你的猜想并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點(diǎn)M,點(diǎn)F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點(diǎn)E是BC的中點(diǎn),若點(diǎn)P以1cm/s秒的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)F運(yùn)動(dòng);點(diǎn)Q同時(shí)以2cm/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到F點(diǎn)時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)__秒時(shí),以P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)D是AC的中點(diǎn),直角的兩邊分別交AB、BC于點(diǎn)E、F,給出以下結(jié)論:①;②;③;④;⑤是等腰直角三角形. 當(dāng)在內(nèi)繞頂點(diǎn)D旋轉(zhuǎn)時(shí)(點(diǎn)E不與點(diǎn)A、B重合),上述結(jié)論始終成立的有____________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,點(diǎn)是的中點(diǎn),,交正方形外角的平分線于,連接、、,求證:
;
;
是等腰直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com