某商品的進價為每千克40元,銷售單價與月銷售量的關(guān)系如下表(每千克售價不能高于65元):
銷售單價(元) | 50 | 53 | 56 | 59 | 62 | 65 |
月銷售量(千克) | 420 | 360 | 300 | 240 | 180 | 120 |
(1)y=-20x2+220x+4200(0<x≤15且x為整數(shù));(2)當售價定為每件55或56元,每個月的利潤最大,最大的月利潤是4800元.
解析試題分析:(1)銷售利潤=每件商品的利潤×賣出件數(shù),根據(jù)每千克售價不能高于65元可得自變量的取值;
(2)把所得二次函數(shù)整理為頂點式,得到相應(yīng)的x的整數(shù)值,即可求得相應(yīng)的售價和最大的月利潤.
試題解析:(1)y=(420-20x)(50+x-40)=-20x2+220x+4200(0<x≤15且x為整數(shù));
(2)y=-20(x-5.5)2+4805.
∵a=-20<0,
∴當x=5.5時,y有最大值4805.
∵0<x≤15且x為整數(shù)
∴x=5或6.
當x=5時,50+x=55,y=4800(元),當x=6時,50+x=56,y=4800(元)
∴當售價定為每件55或56元,每個月的利潤最大,最大的月利潤是4800元.
考點: 1.二次函數(shù)的應(yīng)用;2.二次函數(shù)的最值.
科目:初中數(shù)學 來源: 題型:解答題
如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標系中,如圖(2).
求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知:拋物線與x軸的兩個交點分別為A(1,0)和B(3,0),與y軸交于點C.
(1)求此二次函數(shù)的解析式;
(2)寫出點C的坐標________,頂點D的坐標為__________;
(3)將直線CD沿y軸向下平移3個單位長度,求平移后直線m的解析式;
(4)在直線m上是否存在一點E,使得以點E、A、B、C為頂點的四邊形是梯形,如果存在,請直接寫出所有滿足條件的E點的坐標__________________________________(不必寫出過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知二次函數(shù)y=x2+bx+c過點A(1,0),C(0,﹣3).
(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點P使△ABP的面積為10,請求出出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
鄞州區(qū)有一種可食用的野生菌,上市時,外商李經(jīng)理按市場價格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測,該野生菌的市場價格將以每天每千克上漲1元;但冷凍存放這批野生菌時每天需要支出各種費用合計310元,而且這類 野生菌在冷庫中最多保存160天,同時,平均每天有3千克的野生菌損壞不能出售.
(1)設(shè)天后每千克該野生菌的市場價格為y元,試寫出y與x之間的函數(shù)關(guān)系式;
(2)若存放x天后,將這批野生菌一次性出售,設(shè)這批野生菌的銷售總額為元,試寫出與x之間的函數(shù)關(guān)系式;
(3)李經(jīng)理將這批野生菌存放多少天后出售可獲得最大利潤元?
(利潤=銷售總額-收購成本-各種費用)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線經(jīng)過A(﹣3,0),B(1,0)兩點,與y軸交于點C,其頂點為D,對稱軸是直線l,l與x軸交于點H.
(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某商場購進一種單價為40元的籃球,如果以單價50元售出,那么每月可售出500個,根據(jù)銷售經(jīng)驗,銷售單價每提高1元,銷售量相應(yīng)減少10個.
(1)設(shè)銷售單價提高x元(x為正整數(shù)),寫出每月銷售量y(個)與x(元)之間的函數(shù)關(guān)系式;
(2)假設(shè)這種籃球每月的銷售利潤為w元,試寫出w與x之間的函數(shù)關(guān)系式,并通過配方討論,當銷售單價定為多少元時,每月銷售這種籃球的利潤最大,最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知二次函數(shù)y=-x2-x.
(1)在給定的直角坐標系中,畫出這個函數(shù)的圖象;
(2)根據(jù)圖象,寫出當y<0時,x的取值范圍;
(3)若將此圖象沿x軸向右平移3個單位,請寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
為了落實國務(wù)院的指示精神,地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com