如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,6).動點(diǎn)Q從點(diǎn)O、動點(diǎn)P從點(diǎn)A同時出發(fā),分別沿著OA方向、AB方向均以1個單位長度/秒的速度勻速運(yùn)動,運(yùn)動時間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點(diǎn)分別為C、D,連接CD、QC.
(1)求當(dāng)t為何值時,點(diǎn)Q與點(diǎn)D重合?
(2)設(shè)△QCD的面積為S,試求S與t之間的函數(shù)關(guān)系式,并求S的最大值;
(3)若⊙P與線段QC只有一個交點(diǎn),請直接寫出t的取值范圍.
(1)?? (2)15?? (3)0<t≤或<t≤5
【解析】
解:(1)∵A(8,0),B(0,6),
∴OA=8,OB=6,
∴AB==10,
∴cos∠BAO=,sin∠BAO=.
∵AC為⊙P的直徑,
∴△ACD為直角三角形.
∴AD=AC•cos∠BAO=2t×=t.
當(dāng)點(diǎn)Q與點(diǎn)D重合時,OQ+AD=OA,
即:t+t=8,
解得:t=.
∴t=(秒)時,點(diǎn)Q與點(diǎn)D重合.
(2)在Rt△ACD中,CD=AC•sin∠BAO=2t×t.
①當(dāng)0<t≤時,
DQ=OA-OQ-AD=8-t-t=8-t.
∴S=DQ•CD=(8-t)•t=-t2+t.
∵-=,0<<,
∴當(dāng)t=時,S有最大值為;
②當(dāng)<t≤5時,
DQ=OQ+AD-OA=t+t-8=t-8.
∴S=DQ•CD=(t-8)•t=t2-t.
∵-=,<,所以S隨t的增大而增大,
∴當(dāng)t=5時,S有最大值為15>.
綜上所述,S的最大值為15.
(3)當(dāng)CQ與⊙P相切時,有CQ⊥AB,
∵∠BAO=∠QAC,∠AOB=∠ACQ=90°,
∴△ACQ∽△AOB,
∴,,
解得t=.
所以,⊙P與線段QC只有一個交點(diǎn),t的取值范圍為0<t≤或<t≤5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com