【題目】如圖①,有兩個(gè)形狀完全相同的直角三角形ABC和EFG疊放在一起(點(diǎn)A與點(diǎn)E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點(diǎn).
如圖②,若整個(gè)△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時(shí),點(diǎn)P從△EFG的頂點(diǎn)G出發(fā),以1cm/s的速度在直角邊GF上向點(diǎn)F運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)F時(shí),點(diǎn)P停止運(yùn)動,△EFG也隨之停止平移.設(shè)運(yùn)動時(shí)間為x(s),FG的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點(diǎn)P與G、F重合的情況).
(1)當(dāng)x為何值時(shí),OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時(shí)刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
【答案】(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當(dāng)x=(s)時(shí),四邊形OAHP面積與△ABC面積的比為13:24.
【解析】
(1)由于O是EF中點(diǎn),因此當(dāng)P為FG中點(diǎn)時(shí),OP∥EG∥AC,據(jù)此可求出x的值.
(2)由于四邊形AHPO形狀不規(guī)則,可根據(jù)三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長可用AF的長和∠FAH的余弦值求出,同理可求出FH的表達(dá)式(也可用相似三角形來得出AH、FH的長).三角形OFP中,可過O作OD⊥FP于D,PF的長易知,而OD的長,可根據(jù)OF的長和∠FOD的余弦值得出.由此可求得y、x的函數(shù)關(guān)系式.
(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數(shù)式中即可得出x的值.
解:(1)∵Rt△EFG∽Rt△ABC
∴,即,
∴FG==3cm
∵當(dāng)P為FG的中點(diǎn)時(shí),OP∥EG,EG∥AC
∴OP∥AC
∴x==×3=1.5(s)
∴當(dāng)x為1.5s時(shí),OP∥AC.
(2)在Rt△EFG中,由勾股定理得EF=5cm
∵EG∥AH
∴△EFG∽△AFH
∴,
∴AH=(x+5),F(xiàn)H=(x+5)
過點(diǎn)O作OD⊥FP,垂足為D
∵點(diǎn)O為EF中點(diǎn)
∴OD=EG=2cm
∵FP=3﹣x
∴S四邊形OAHP=S△AFH﹣S△OFP
=AHFH﹣ODFP
=(x+5)(x+5)﹣×2×(3﹣x)
=x2+x+3(0<x<3).
(3)假設(shè)存在某一時(shí)刻x,使得四邊形OAHP面積與△ABC面積的比為13:24
則S四邊形OAHP=×S△ABC
∴x2+x+3=××6×8
∴6x2+85x﹣250=0
解得x1=,x2=﹣(舍去)
∵0<x<3
∴當(dāng)x=(s)時(shí),四邊形OAHP面積與△ABC面積的比為13:24.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價(jià)和零售價(jià)如表所示:
品名 | 獼猴桃 | 芒果 |
批發(fā)價(jià)元千克 | 20 | 40 |
零售價(jià)元千克 | 26 | 50 |
他購進(jìn)的獼猴桃和芒果各多少千克?
如果獼猴桃和芒果全部賣完,他能賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的半徑為2.弦,點(diǎn)為優(yōu)弧上一動點(diǎn),交直線于點(diǎn),則的最大面積是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在直角坐標(biāo)系中,有菱形,點(diǎn)的坐標(biāo)為,對角線,相交于點(diǎn),反比例函數(shù)經(jīng)過點(diǎn),交的延長線于點(diǎn),且,則點(diǎn)的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)圖案均由邊長相等的黑、白兩色正方形按規(guī)律拼接而成,照此規(guī)律,第n個(gè)圖案中白色正方形比黑色正方形多________個(gè).(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長線上一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若PD=1,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,,,過點(diǎn)、向過點(diǎn)的直線作垂線,垂足分別為、,交于點(diǎn).
(1)如圖,求證:;
(2)如圖,連接、,若,在不添加任何輔助線的情況下,請直接寫出四個(gè)角,使寫出的每一個(gè)角的正切值都等于.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P1(x1,y1)、P2(x2,y2)、P3(x3,y3),……,Pn(xn,yn)均在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)Q1、Q2、Q3、……、Qn均在x軸的正半軸上,且△OP1Q1、△Q1P2Q2、△Q2P3Q3、…、△Qn﹣1PnQn均為等腰直角三角形,OQ1、Q1Q2、Q2Q3、……、Qn﹣1Qn分別為以上等腰直角三角形的底邊,則y1+y2+y3+…+y2019的值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(0,4),C(2,0),將矩形OABC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)1350,得到矩形EFGH(點(diǎn)E與O重合).
(1)若GH交y軸于點(diǎn)M,則∠FOM= ,OM= ;
(2)矩形EFGH沿y軸向上平移t個(gè)單位.
①直線GH與x軸交于點(diǎn)D,若AD∥BO,求t的值;
②若矩形EFHG與矩形OABC重疊部分的面積為S個(gè)平方單位,試求當(dāng)0<t≤時(shí),S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com