【題目】如圖所示,△ABC的兩條角平分線相交于一點G,∠BAC=76°,∠ABE=20°,求∠BEC,∠ADC的度數(shù).

【答案】BEC=96°;∠ADC=78°.

【解析】

根據(jù)角平分線的性質(zhì)得出∠EBC與∠ABC、DAC的度數(shù),再根據(jù)三角形內(nèi)角和定理求出∠C,即可得出結(jié)論.

∵BE平分∠ABC,ABE=20°,

ABE=∠EBC=∠ABC=20°,∠ABC=40°,

∵AD平分∠BAC,BAC=76°,

∴∠DAC=∠BAC=38°,

∠C=180°-∠ABC-BAC=180°-40°-76°=64°,

BEC=180°-∠EBC-∠C=180°-20°-64°=96°;

ADC=180°-∠DAC-∠C=180°-38°-64°=78°.

故答案為:∠BEC=96°;ADC=78°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】求代數(shù)式的值.

(1)(6a2﹣2ab)﹣2(3a2+4ab﹣b2)其中a=,b=﹣1.

(2)已知A=a2﹣2ab+b2,B=a2+2ab+b2

①求2A﹣B;

②如果2A﹣3B+C=0,那么C的表達式是什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年9月,莉莉進入八中初一,在準備開學用品時,她決定購買若干個某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標價都是20/個.甲文具店的銷售方案是:購買該筆記本的數(shù)量不超過5個時,原價銷售;購買該筆記本超過5個時,從第6個開始按標價的八折出售:乙文具店的銷售方案是:不管購買多少個該款筆記本,一律按標價的九折出售.

(1)若設莉莉要購買xx>5)個該款筆記本,請用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購買全部該款筆記本所需的費用;

(2)在(1)的條件下,莉莉購買多少個筆記本時,到乙文具店購買全部筆記本所需的費用與到甲文具店購買全部筆記本所需的費用相同?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】十一長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.

(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時能相遇?

(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形和下列邊長相同的正多邊形地磚組合中,不能夠鋪滿地面的是(  )

A. 正三角形 B. 正六邊形

C. 正八邊形 D. 正三角形和正六邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某玩具廠分別安排甲乙兩個車間加工1000個同一型號的奧運會吉祥物,每名工人每天加工吉祥物的個數(shù)相等且保持不變,由于生產(chǎn)需要,其中一個車間推遲兩天開始加工,剛開始加工時,甲車間有10名工人,乙車間有12名工人,圖中線段OB和折線ACB分別表示兩個車間的加工情況.依據(jù)圖中提供的信息,完成下列各題:

(1)線段OB反映的是   車間的加工情況;

(2)開始加工后,甲車間加工多少天后,兩車間加工吉祥物數(shù)相同?

(3)根據(jù)折線段反映的加工情況,請你提出一個問題,并給出解答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設甲乙兩人相距(米),甲行走的時間為(分),關(guān)于的函數(shù)函數(shù)圖像的一部分如圖所示.

(1)求甲行走的速度;

(2)在坐標系中,補畫關(guān)于函數(shù)圖象的其余部分;

(3)問甲、乙兩人何時相距360米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)

(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;

(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點C是線段AB上的一點,點D是線段AB的中點,點E是線段BC的中點.

(1)當AC=10,BC=8時,求線段DE的長度;

(2)當AC=m,BC=n(m>n)時,求線段DE的長度;

(3)從(1)(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律?請直接寫出來.

查看答案和解析>>

同步練習冊答案