【題目】如圖,直線AB:y=0.5x+1分別與x軸、y軸交于點(diǎn)A,點(diǎn)B,直線CD:y=x+b分別與x軸,y軸交于點(diǎn)C,點(diǎn)D.直線AB與CD相交于點(diǎn)P,已知S△ABD=4,則點(diǎn)P的坐標(biāo)是( )
A. (3,2.5) B. (8,5) C. (4,3) D. (0.5,1.25)
【答案】B
【解析】
由直線y=0.5x+1分別與x軸、y軸交于點(diǎn)A、點(diǎn)B,即可求得點(diǎn)A與B的坐標(biāo),又由S△ABD=4,即可求得點(diǎn)D的坐標(biāo),由待定系數(shù)法即可求得直線CD的解析式,然后由直線AB與CD相交于點(diǎn)P,可得方程組: ,解此方程組即可求得答案.
解: 直線y=0.5x+1分別與x軸、y軸交于點(diǎn)A、點(diǎn)B,
∴點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(0,1),
∴OA=2,OB=1,
∵S△ABD=4,
∴ ,
∴BD=4,
∴OD=BD-OB=4-1=3,
∴點(diǎn)D的坐標(biāo)為(0,-3),
∵點(diǎn)D在直線y=x+b上,
∴b=-3,
∴直線CD的解析式為:y=x-3,
∵直線AB與CD相交于點(diǎn)P,
聯(lián)立可得:,
解得:,
∴點(diǎn)P的坐標(biāo)是:(8,5).
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,2)請解答下列問題:
(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1 , 并寫出A1的坐標(biāo).
(2)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2 , 并寫出A2的坐標(biāo).
(3)畫出△A2B2C2關(guān)于原點(diǎn)O成中心對(duì)稱的△A3B3C3 , 并寫出A3的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“書香包河”讀書活動(dòng)中,學(xué)校準(zhǔn)備購買一批課外讀物,為使課外讀物滿足學(xué)生們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了______________名同學(xué);
(2)條形統(tǒng)計(jì)圖中,m=_________,n=__________;
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算或化簡
∣∣
(2) 3 2 3
(3) x yx 2y
(4) 3a b 23a b 2
(5)(3a+2)(3a-2)
(6)786- 786172 86
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】證明命題“角的平分線上的點(diǎn)到角的兩邊的距離相等”,要根據(jù)題意,畫出圖形,并用符號(hào)表示已知和求證,寫出證明過程,下面是小明同學(xué)根據(jù)題意畫出的圖形,并寫出了不完整的已知和求證.
(1)已知:如圖,∠AOC=∠BOC,點(diǎn)P在OC上,________
求證:________.
請你補(bǔ)全已知和求證
(2)并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
“ a 2 ≥0”這個(gè)結(jié)論在數(shù)學(xué)中非常有用,有時(shí)我們需要將代數(shù)式配成完全平方式.例如:
x2 4x 5 x2 4x 4 1 x 22 1 ,
∵ x 22 ≥0,
∴ x 22 1 ≥1,
∴ x2 4x 5 ≥1.
試?yán)?/span>“配方法”解決下列問題:
(1)填空: x2 4x 5 ( x )2+ ;
(2)已知 x2 4x y2 2y 5 0 ,求 x y 的值;
(3)比較代數(shù)式 x2 1與2x 3 的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=2x2﹣2x+m(0<m< ),如果當(dāng)x=a時(shí),y<0,那么當(dāng)x=a﹣1時(shí),函數(shù)值y的取值范圍為( )
A.y<0
B.0<y<m
C.m<y<m+4
D.y>m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,現(xiàn)有一個(gè)長方體水槽放在桌面上,從水槽內(nèi)量得它的側(cè)面高20cm,底面的長25cm,寬20cm,水槽內(nèi)水的高度為acm,往水槽里放入棱長為10cm的立方體鐵塊.
(1)求下列兩種情況下a的值.
①若放入鐵塊后水面恰好在鐵塊的上表面;
②若放入鐵塊后水槽恰好盛滿(無溢出).
(2)若0<a≤18,求放入鐵塊后水槽內(nèi)水面的高度(用含a的代數(shù)式表示).
(3)如圖2,在水槽旁用管子連通一個(gè)底面在桌面上的圓柱形容器,內(nèi)部底面積為50cm2,管口底部A離水槽內(nèi)底面的高度為hcm(h>a),水槽內(nèi)放入鐵塊,水溢入圓柱形容器后,容器內(nèi)水面與水槽內(nèi)水面的高度差為8.2cm,若a=15,求h的值.(水槽和容器的壁及底面厚度相同)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com