【題目】點(diǎn)P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函數(shù)y=-x2+2x+c的圖象上,則y1,y2,y3的大小關(guān)系是(  )

A. y3>y2>y1 B. y3>y1=y(tǒng)2 C. y1>y2>y3 D. y1=y(tǒng)2>y3

【答案】D

【解析】y=x2+2x+c,

∴對(duì)稱軸為x=1,

P2(3,y2),P3(5,y3)在對(duì)稱軸的右側(cè),yx的增大而減小,

3<5,

y2>y3

根據(jù)二次函數(shù)圖象的對(duì)稱性可知,P1(1,y1)(3,y1)關(guān)于對(duì)稱軸對(duì)稱,

y1=y2>y3,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 同一平面內(nèi),兩條直線的位置關(guān)系只有相交、平行兩種

B. 同一平面內(nèi),不相交的兩條線段平行

C. 不相交的兩條直線是平行線

D. 同一平面內(nèi),不相交的兩條射線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形三個(gè)內(nèi)角的度數(shù)之和是180°,如圖是兩個(gè)三角板不同位置的擺放,其中∠ACB=∠CDE=90°,∠BAC=60°,∠DEC=45°.

(1)當(dāng)ABCD時(shí),如圖①,求∠DCB的度數(shù);

(2)當(dāng)CDCB重合時(shí),如圖②,判斷DEAC的位置關(guān)系并說(shuō)明理由;

(3)如圖③,當(dāng)∠DCB= 時(shí),ABCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(2ab24-6a2b)÷(-12a6b7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:28x4y2÷7x3y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3×3的方格紙中,點(diǎn)A、B、C、DE、F分別位于如圖所示的小正方形的頂點(diǎn)上.

1)從AD、E、F四個(gè)點(diǎn)中任意取一點(diǎn),以所取的這一點(diǎn)及點(diǎn)B、C為頂點(diǎn)畫三角形,則所畫三角形是等腰三角形的概率是  ;

2)從A、D、E、F四個(gè)點(diǎn)中先后任意取兩個(gè)不同的點(diǎn),以所取的這兩點(diǎn)及點(diǎn)B、C為頂點(diǎn)畫四邊形,求所畫四邊形是平行四邊形的概率是  (用樹狀圖或列表法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且EDF=45°.將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM.

(1)求證:EF=FM (2)當(dāng)AE=1時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列推理過(guò)程(補(bǔ)出缺項(xiàng)或在括號(hào)內(nèi)注明理由,7分)

已知:△ABC,求證:∠A+∠B+∠C=180°

證明:延長(zhǎng)BC到D,作CM∥AB

∴∠A=______ ( )

∠B=_______ ( )

∵∠2+∠1+∠ACB=180° ( )

∴___________________( )

查看答案和解析>>

同步練習(xí)冊(cè)答案