【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過點A(3,0)、B(0,﹣3),點P是直線AB上的動點,過點P作x軸的垂線交拋物線于點M,設(shè)點P的橫坐標(biāo)為t.

(1)分別求出直線AB和這條拋物線的解析式.
(2)若點P在第四象限,連接AM、BM,當(dāng)線段PM最長時,求△ABM的面積.
(3)是否存在這樣的點P,使得以點P、M、B、O為頂點的四邊形為平行四邊形?若存在,請求出點P的橫坐標(biāo);若不存在,請說明理由.

【答案】
(1)

解:把A(3,0)B(0,﹣3)代入y=x2+mx+n,得

,

解得: ,

所以拋物線的解析式是y=x2﹣2x﹣3.

設(shè)直線AB的解析式是y=kx+b,

把A(3,0)B(0,﹣3)代入y=kx+b,得: ,

解得:

所以直線AB的解析式是y=x﹣3


(2)

解:設(shè)點P的坐標(biāo)是(t,t﹣3),則M(t,t2﹣2t﹣3),

∵p在第四象限,

∴PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t=﹣(t﹣ 2+ ,

當(dāng)t= 時,二次函數(shù)取得最大值 ,即PM最長值為 ,

則SABM=SBPM+SAPM= × ×3=


(3)

解:存在,

理由如下:

∵PM∥OB,

∴當(dāng)PM=OB時,點P、M、B、O為頂點的四邊形為平行四邊形,

①當(dāng)P在第四象限:PM=OB=3,PM最長時只有 ,所以不可能有PM=3.

②當(dāng)P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,

解得t1= ,t2= (舍去),

所以P點的橫坐標(biāo)是 ;

③當(dāng)P在第三象限:PM=OB=3,t2﹣3t=3,解得t1= (舍去),t2= ,

所以P點的橫坐標(biāo)是

所以P點的橫坐標(biāo)是


【解析】(1)待定系數(shù)法分別求解可得;(2)根據(jù)題意可設(shè)點P的坐標(biāo)是(t,t﹣3),則M(t,t2﹣2t﹣3),繼而可得PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣(t﹣ 2+ ,知PM最長值為 ,根據(jù)SABM=SBPM+SAPM可得答案;(3)由PM∥OB,可知當(dāng)PM=OB時點P、M、B、O為頂點的四邊形為平行四邊形,據(jù)此可分以下三種情況:①當(dāng)P在第四象限;②當(dāng)P在第一象限;③當(dāng)P在第三象限;由PM=OB=3列出關(guān)于t的方程分別求解可得.
【考點精析】關(guān)于本題考查的二次函數(shù)的圖象和二次函數(shù)的性質(zhì),需要了解二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字,解答問題. 大家知道 是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此 的小數(shù)部分我們不可能全部地寫出來,于是小明用 ﹣1來表示 的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理的,因為 的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答:已知10+ =x+y,其中x是整數(shù),且0<y<1,求x﹣y的相反數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知1與2是對頂角,2與3是鄰補角,則1+3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

請結(jié)合圖表完成下列各題:

(1)①表中a的值為 ; ②頻數(shù)分布直方圖補充完整;

(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是

(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進行對抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強兩名男同學(xué)能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x2250的解為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面不是同類項的是(  )

A. ﹣2與5 B. ﹣2a2b與a2b C. ﹣x2y2與6x2y2 D. 2m與2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A (﹣1,2)、B (0,﹣1)、C (1,﹣2).

(1)求二次函數(shù)的表達式;
(2)畫出二次函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中,是必然事件的是(

A.射擊運動員射擊一次命中10環(huán)B.任意一個三角形的內(nèi)角和360o

C.擲一次骰子,向上一面的點數(shù)為6D.水加熱到100℃時,水沸騰

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系xoy中,O是坐標(biāo)原點,點A在x正半軸上,OA=12 cm,點B在y軸的正半軸上,OB=12cm,動點P從點O開始沿OA以2 cm/s的速度向點A移動,動點Q從點A開始沿AB以4cm/s的速度向點B移動,動點R從點B開始沿BO以2cm/s的速度向點O移動.如果P、Q、R分別從O、A、B同時移動,移動時間為t(0<t<6)s.

(1)求∠OAB的度數(shù).
(2)以O(shè)B為直徑的⊙O′與AB交于點M,當(dāng)t為何值時,PM與⊙O′相切?
(3)是否存在△RPQ為等腰三角形?若存在,請直接寫出t值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案