【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB= ,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰好在弧EF上,則圖中陰影部分的面積為(結(jié)果保留π).
【答案】 ﹣1
【解析】解:連接CD,作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,點D為AB的中點,
∴DC= AB= ,四邊形DMCN是正方形,DM=1.
則扇形FDE的面積= = .
∵CA=CB,∠ACB=90°,點D為AB的中點,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
在△DMG和△DNH中,
,
∴△DMG≌△DNH(AAS),
∴S四邊形DGCH=S四邊形DMCN=1.
∴陰影部分的面積= ﹣1.
所以答案是: ﹣1.
【考點精析】解答此題的關(guān)鍵在于理解扇形面積計算公式的相關(guān)知識,掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BA,BE⊥DC交DC的延長線于點E.
(1)求證:∠1=∠BAD;
(2)求證:BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長分別為2和4的兩個全等三角形,開始它們在左邊重疊,大△ABC固定不動,然后把小△A′B′C′自左向右平移,直至移到點B′到C重合時停止,設(shè)小三角形移動的距離為x,兩個三角形的重合部分的面積為y,則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列結(jié)論: ①a<0,②b<0,③c<0,
其中正確的判斷是( )
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高中學(xué)校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學(xué)生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標(biāo)準(zhǔn),共分為6個型號) 根據(jù)以上信息,解答下列問題
(1)該班共有多少名學(xué)生,其中穿175型號校服的學(xué)生有多少?
(2)在條形統(tǒng)計圖中,請把空缺部分補充完整;
(3)在扇形統(tǒng)計圖中,請計算185型號校服所對應(yīng)的扇形圓心角的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于P(n,2),與x軸交于A(﹣4,0),與y軸交于C,PB⊥x軸于點B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象有一點D,使得以B、C、P、D為頂點的四邊形是菱形,求出點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,將△ABC在平面內(nèi)繞點A旋轉(zhuǎn)到△AB′C′的位置,使CC′∥AB,則旋轉(zhuǎn)角的度數(shù)為( )
A.35°
B.40°
C.50°
D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學(xué)生最喜愛的一種書籍類型進行隨機抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)請把折線統(tǒng)計圖(圖1)補充完整;
(3)求出扇形統(tǒng)計圖(圖2)中,體育部分所對應(yīng)的圓心角的度數(shù);
(4)如果這所中學(xué)共有學(xué)生1800名,那么請你估計最喜愛科普類書籍的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com