(2009•柳州)如圖,四邊形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四邊形ABCD的周長.

【答案】分析:先證明四邊形ABCD是平行四邊形,再利用平行四邊形的性質(zhì)可求出四邊形ABCD的周長.
解答:解:解法一:∵AB∥CD
∴∠B+∠C=180°,
又∵∠B=∠D,
∴∠C+∠D=180°,
∴AD∥BC即得ABCD是平行四邊形,
∴AB=CD=3,BC=AD=6,
∴四邊形ABCD的周長=2×6+2×3=18;
解法二:連接AC,
∵AB∥CD,
∴∠BAC=∠DCA,
又∵∠B=∠D,AC=CA,
∴△ABC≌△CDA,
∴AB=CD=3,BC=AD=6,
∴四邊形ABCD的周長=2×6+2×3=18;
解法三:連接BD,
∵AB∥CD
∴∠ABD=∠CDB,
又∵∠ABC=∠CDA,
∴∠CBD=∠ADB,
∴AD∥BC即ABCD是平行四邊形,
∴AB=CD=3,BC=AD=6(5分)
∴四邊形ABCD的周長=2×6+2×3=18.
點評:本題考查了平行四邊形的判定與性質(zhì),熟練掌握性質(zhì)定理和判定定理是解題的關(guān)鍵.平行四邊形的五種判定方法與平行四邊形的性質(zhì)相呼應(yīng),每種方法都對應(yīng)著一種性質(zhì),在應(yīng)用時應(yīng)注意它們的區(qū)別與聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•柳州)如圖,已知拋物線y=ax2-2ax-b(a>0)與x軸的一個交點為B(-1,0),與y軸的負半軸交于點C,頂點為D.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點A的坐標(biāo);
(2)以AD為直徑的圓經(jīng)過點C.
①求拋物線的解析式;
②點E在拋物線的對稱軸上,點F在拋物線上,且以B,A,F(xiàn),E四點為頂點的四邊形為平行四邊形,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省梅州市數(shù)學(xué)總復(fù)習(xí)測試卷(12) 綜合二(解析版) 題型:解答題

(2009•柳州)如圖,已知拋物線y=ax2-2ax-b(a>0)與x軸的一個交點為B(-1,0),與y軸的負半軸交于點C,頂點為D.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點A的坐標(biāo);
(2)以AD為直徑的圓經(jīng)過點C.
①求拋物線的解析式;
②點E在拋物線的對稱軸上,點F在拋物線上,且以B,A,F(xiàn),E四點為頂點的四邊形為平行四邊形,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省河源市數(shù)學(xué)總復(fù)習(xí)測試卷(12) 綜合二(解析版) 題型:解答題

(2009•柳州)如圖,已知拋物線y=ax2-2ax-b(a>0)與x軸的一個交點為B(-1,0),與y軸的負半軸交于點C,頂點為D.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點A的坐標(biāo);
(2)以AD為直徑的圓經(jīng)過點C.
①求拋物線的解析式;
②點E在拋物線的對稱軸上,點F在拋物線上,且以B,A,F(xiàn),E四點為頂點的四邊形為平行四邊形,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣西柳州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•柳州)如圖,已知拋物線y=ax2-2ax-b(a>0)與x軸的一個交點為B(-1,0),與y軸的負半軸交于點C,頂點為D.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點A的坐標(biāo);
(2)以AD為直徑的圓經(jīng)過點C.
①求拋物線的解析式;
②點E在拋物線的對稱軸上,點F在拋物線上,且以B,A,F(xiàn),E四點為頂點的四邊形為平行四邊形,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(03)(解析版) 題型:解答題

(2009•柳州)如圖,正方形網(wǎng)格中,△ABC為格點三角形(頂點都是格點),將△ABC繞點A按逆時針方向旋轉(zhuǎn)90°得到△AB1C1
(1)在正方形網(wǎng)格中,作出△AB1C1;(不要求寫作法)
(2)設(shè)網(wǎng)格小正方形的邊長為1cm,用陰影表示出旋轉(zhuǎn)過程中線段BC所掃過的圖形,然后求出它的面積.(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊答案