【題目】Pn表示n邊形的對(duì)角線(xiàn)的交點(diǎn)個(gè)數(shù)(指落在其內(nèi)部的交點(diǎn)),如果這些交點(diǎn)都不重合,那么Pn與n的關(guān)系式是:Pn= (n2﹣an+b)(其中a,b是常數(shù),n≥4)
(1)通過(guò)畫(huà)圖,可得:四邊形時(shí),P4= ;五邊形時(shí),P5=
(2)請(qǐng)根據(jù)四邊形和五邊形對(duì)角線(xiàn)交點(diǎn)的個(gè)數(shù),結(jié)合關(guān)系式,求a,b的值.
【答案】
(1)1;5
(2)
解:將(1)中的數(shù)值代入公式,
得: ,
解得:
【解析】解:(1)畫(huà)出圖形如下.
由畫(huà)形,可得:
當(dāng)n=4時(shí),P4=1;當(dāng)n=5時(shí),P5=5.
故答案為:1;5.
(1)依題意畫(huà)出圖形,數(shù)出圖形中對(duì)角線(xiàn)交點(diǎn)的個(gè)數(shù)即可得出結(jié)論;(2)將(1)中的數(shù)值代入公式可得出關(guān)于a、b的二元一次方程組,解方程組即可得出結(jié)論.本題考查了多邊形的對(duì)角線(xiàn)、作圖以及二元一次方程組的應(yīng)用,解題的關(guān)鍵是:(1)畫(huà)出圖形,數(shù)出對(duì)角線(xiàn)交點(diǎn)的個(gè)數(shù);(2)代入數(shù)據(jù)得出關(guān)于a、b的二元一次方程組.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),依據(jù)題意畫(huà)出圖形,利用數(shù)形結(jié)合解決問(wèn)題是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘巡邏艇航行至海面B處時(shí),得知正北方向上距B處20海里的C處有一漁船發(fā)生故障,就立即指揮港口A處的救援艇前往C處營(yíng)救.已知C處位于A處的北偏東45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之間的距離.(結(jié)果精確到0.1海里,參考數(shù)據(jù) ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完成;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為半圓O的直徑,C為半圓O上一點(diǎn),連接AC,BC,過(guò)點(diǎn)O作OD⊥AC于點(diǎn)D,過(guò)點(diǎn)A作半圓O的切線(xiàn)交OD的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BD并延長(zhǎng)交AE于點(diǎn)F.
(1)求證:AEBC=ADAB;
(2)若半圓O的直徑為10,sin∠BAC= ,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(a+1,﹣ +1)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)在第四象限,則a的取值范圍在數(shù)軸上表示正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=﹣1,且拋物線(xiàn)經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線(xiàn)y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線(xiàn)BC和拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線(xiàn)的對(duì)稱(chēng)軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一矩形紙片ABCD折疊,使兩個(gè)頂點(diǎn)A,C重合,折痕為FG.若AB=4,BC=8,則△ABF的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過(guò)平移后得到△A1B1C1 , 已知點(diǎn)C1的坐標(biāo)為(4,0),寫(xiě)出頂點(diǎn)A1 , B1的坐標(biāo);
(2)若△ABC和△A1B2C2關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)圖形,寫(xiě)出△A1B2C2的各頂點(diǎn)的坐標(biāo);
(3)將△ABC繞著點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°得到△A2B3C3 , 寫(xiě)出△A2B3C3的各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】測(cè)量計(jì)算是日常生活中常見(jiàn)的問(wèn)題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點(diǎn)處觀(guān)測(cè)旗桿頂點(diǎn)A的仰角為50°,觀(guān)測(cè)旗桿底部B點(diǎn)的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com