如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點(diǎn),過(guò)A、B兩點(diǎn)的拋物線為y=﹣x2+bx+c.點(diǎn)D為線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)D作CD⊥x軸于點(diǎn)C,交拋物線于點(diǎn)E.

(1)求拋物線的解析式.
(2)當(dāng)DE=4時(shí),求四邊形CAEB的面積.
(3)連接BE,是否存在點(diǎn)D,使得△DBE和△DAC相似?若存在,求此點(diǎn)D坐標(biāo);若不存在,說(shuō)明理由.

(1)y=﹣x2﹣3x+4。
(2)12
(3)存在點(diǎn)D,使得△DBE和△DAC相似,點(diǎn)D的坐標(biāo)為(﹣3,1)或(﹣2,2)。

解析試題分析:(1)首先求出點(diǎn)A、B的坐標(biāo),然后利用待定系數(shù)法求出拋物線的解析式。
(2)設(shè)點(diǎn)C坐標(biāo)為(m,0)(m<0),根據(jù)已知條件求出點(diǎn)E坐標(biāo)為(m,8+m);由于點(diǎn)E在拋物線上,則可以列出方程求出m的值.在計(jì)算四邊形CAEB面積時(shí),利用S四邊形CAEB=SACE+S梯形OCEB﹣SBCO,可以簡(jiǎn)化計(jì)算。
(3)由于△ACD為等腰直角三角形,而△DBE和△DAC相似,則△DBE必為等腰直角三角形。分∠BED=90°和∠EBD=90°兩種情況討論。
解:(1)在直線解析式y(tǒng)=x+4中,令x=0,得y=4;令y=0,得x=﹣4,
∴A(﹣4,0),B(0,4)。
∵點(diǎn)A(﹣4,0),B(0,4)在拋物線y=﹣x2+bx+c上,
,解得:。
∴拋物線的解析式為:y=﹣x2﹣3x+4。
(2)設(shè)點(diǎn)C坐標(biāo)為(m,0)(m<0),則OC=﹣m,AC=4+m。
∵OA=OB=4,∴∠BAC=45°!唷鰽CD為等腰直角三角形!郈D=AC=4+m。
∴CE=CD+DE=4+m+4=8+m。∴點(diǎn)E坐標(biāo)為(m,8+m)。
∵點(diǎn)E在拋物線y=﹣x2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2。
∴C(﹣2,0),AC=OC=2,CE=6。
∴S四邊形CAEB=SACE+S梯形OCEB﹣SBCO=×2×6+(6+4)×2﹣×2×4=12。
(3)設(shè)點(diǎn)C坐標(biāo)為(m,0)(m<0),
則OC=﹣m,CD=AC=4+m,BD=OC=﹣m,則D(m,4+m)。
∵△ACD為等腰直角三角形,若△DBE和△DAC相似,則△DBE必為等腰直角三角形。
i)若∠BED=90°,則BE=DE,
∵BE=OC=﹣m,∴DE=BE=﹣m!郈E=4+m﹣m=4!郋(m,4)。
∵點(diǎn)E在拋物線y=﹣x2﹣3x+4上,
∴4=﹣m2﹣3m+4,解得m=0(不合題意,舍去)或m=﹣3!郉(﹣3,1)。
ii)若∠EBD=90°,則BE=BD=﹣m,
在等腰直角三角形EBD中,DE=BD=﹣2m,∴CE=4+m﹣2m=4﹣m!郋(m,4﹣m)。
∵點(diǎn)E在拋物線y=﹣x2﹣3x+4上,
∴4﹣m=﹣m2﹣3m+4,解得m=0(不合題意,舍去)或m=﹣2。
∴D(﹣2,2)。
綜上所述,存在點(diǎn)D,使得△DBE和△DAC相似,點(diǎn)D的坐標(biāo)為(﹣3,1)或(﹣2,2)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知二次函數(shù)(m>0)的圖象與x軸交于A、B兩點(diǎn).

(1)寫出A、B兩點(diǎn)的坐標(biāo)(坐標(biāo)用m表示);
(2)若二次函數(shù)圖象的頂點(diǎn)P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)設(shè)以AB為直徑的⊙M與y軸交于C、D兩點(diǎn),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知點(diǎn)A(0,4),B(2,0).

(1)求直線AB的函數(shù)解析式;
(2)已知點(diǎn)M是線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),以M為頂點(diǎn)的拋物線y=(x﹣m)2+n與線段OA交于點(diǎn)C.
①求線段AC的長(zhǎng);(用含m的式子表示)
②是否存在某一時(shí)刻,使得△ACM與△AMO相似?若存在,求出此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。

(1)求拋物線C2的解析式;
(2)若拋物線C2的對(duì)稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請(qǐng)證明四邊形ADBE是菱形,并計(jì)算它的面積;
(3)若點(diǎn)F為對(duì)稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,如果存在,請(qǐng)求出點(diǎn)G的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣4,0),B(﹣1,3),C(﹣3,3)

(1)求此二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的對(duì)稱軸為直線l,該圖象上的點(diǎn)P(m,n)在第三象限,其關(guān)于直線l的對(duì)稱點(diǎn)為M,點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)為N,若四邊形OAPN的面積為20,求m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA=2,OC=6,在OC上取點(diǎn)D將△AOD沿AD翻折,使O點(diǎn)落在AB邊上的E點(diǎn)處,將一個(gè)足夠大的直角三角板的頂點(diǎn)P從D點(diǎn)出發(fā)沿線段DA→AB移動(dòng),且一直角邊始終經(jīng)過(guò)點(diǎn)D,另一直角邊所在直線與直線DE,BC分別交于點(diǎn)M,N.
(1)填空:D點(diǎn)坐標(biāo)是(  ,  ),E點(diǎn)坐標(biāo)是(    );
(2)如圖1,當(dāng)點(diǎn)P在線段DA上移動(dòng)時(shí),是否存在這樣的點(diǎn)M,使△CMN為等腰三角形?若存在,請(qǐng)求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)如圖2,當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),設(shè)P點(diǎn)坐標(biāo)為(x,2),記△DBN的面積為S,請(qǐng)直接寫出S與x之間的函數(shù)關(guān)系式,并求出S隨x增大而減小時(shí)所對(duì)應(yīng)的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,矩形ABCO的頂點(diǎn)A、C分別在y軸、x軸正半軸上,點(diǎn)P在AB上,PA=1,AO=2.經(jīng)過(guò)原點(diǎn)的拋物線的對(duì)稱軸是直線x=2.

(1)求出該拋物線的解析式.
(2)如圖1,將一塊兩直角邊足夠長(zhǎng)的三角板的直角頂點(diǎn)放在P點(diǎn)處,兩直角邊恰好分別經(jīng)過(guò)點(diǎn)O和C.現(xiàn)在利用圖2進(jìn)行如下探究:
①將三角板從圖1中的位置開(kāi)始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),兩直角邊分別交OA、OC于點(diǎn)E、F,當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止旋轉(zhuǎn).請(qǐng)你觀察、猜想,在這個(gè)過(guò)程中,的值是否發(fā)生變化?若發(fā)生變化,說(shuō)明理由;若不發(fā)生變化,求出的值.
②設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為D,頂點(diǎn)為M,在①的旋轉(zhuǎn)過(guò)程中,是否存在點(diǎn)F,使△DMF為等腰三角形?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

由示意圖可見(jiàn),拋物線y=x2 +px+q   ①若有兩點(diǎn)A(a,yl)、B(b,y2)(其中a<b)在x軸下方,則拋物線必與x軸有兩個(gè)交點(diǎn)C(x1,O)、D(x2,O)(其中xl<x2),且滿足xl<a<b<x2.當(dāng)A(1,- 2.005),且xl、x2均為整數(shù)時(shí),求二次函數(shù)的表達(dá)式,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,點(diǎn)P是以O(shè)為圓心, AB為直徑的半圓的中點(diǎn),AB=2,等腰直角三角板45°角的頂點(diǎn)與點(diǎn)P重合,當(dāng)此三角板繞點(diǎn)P旋轉(zhuǎn)時(shí),它的斜邊和直角邊所在的直線與直徑AB分別相交于C、D兩點(diǎn).設(shè)線段AD的長(zhǎng)為x,線段BC的長(zhǎng)為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )

A.  B.  C.  D.

查看答案和解析>>

同步練習(xí)冊(cè)答案