【題目】已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D,DE⊥AC于E.
(1)求證:DE為⊙O的切線;
(2)G是ED上一點(diǎn),連接BE交圓于F,連接AF并延長(zhǎng)交ED于G.若GE=2,AF=3,求EF的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)∠EAF的度數(shù)為30°
【解析】
(1)連接OD,如圖,先證明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根據(jù)切線的判定定理得到結(jié)論;
(2)利用圓周角定理得到∠AFB=90°,再證明Rt△GEF∽△Rt△GAE,利用相似比得到 于是可求出GF=1,然后在Rt△AEG中利用正弦定義求出∠EAF的度數(shù)即可.
(1)證明:連接OD,如圖,
∵OB=OD,
∴∠OBD=∠ODB,
∵AB=AC,
∴∠ABC=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE為⊙O的切線;
(2)解:∵AB為直徑,
∴∠AFB=90°,
∵∠EGF=∠AGF,
∴Rt△GEF∽△Rt△GAE,
∴,即
整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),
在Rt△AEG中,sin∠EAG
∴∠EAG=30°,
即∠EAF的度數(shù)為30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC的平分線交AABC的外接圓于點(diǎn)D,交BC于點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E.
(1)求證:DE=DB.
(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑;
(3)若BD=6,DF=4,求AD的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為的直徑,是外一點(diǎn),交于點(diǎn),過(guò)點(diǎn)作的切線,交于點(diǎn),,作于點(diǎn),交于點(diǎn).
求證:是的切線;
求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從、、、、這五個(gè)數(shù)中,任取一個(gè)數(shù)作為的值,恰好使得關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,且使兩個(gè)根都在和之間(包括和),則取到滿足條件的值的概率為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是直角三角形,∠C=90°,∠CAB的角平分線AE與 AB的垂直平分線DE相交于點(diǎn)E.
(1)如圖2,若點(diǎn)E正好落在邊BC上.
①求∠B的度數(shù)
②證明:BC=3DE
(2)如圖3,若點(diǎn)E滿足C、E、D共線.
求證:AD+DE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D.
(1)求m的值及一次函數(shù)解析式;
(2)P是線段AB上的一點(diǎn),連接PC、PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是菱形ABCD的對(duì)角線的交點(diǎn),E、F分別是OA、OC的中點(diǎn),下列結(jié)論:①四邊形BFDE是菱形;②S四邊形ABCD=EF×BD;③∠ADE=∠EDO;④△DEF是軸對(duì)稱圖形.其中正確的結(jié)論有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的圖象如圖所示,則下列結(jié)論:①;②;③;④.其中正確的結(jié)論是( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3200米.甲同學(xué)先步行200米,然后乘公交車去學(xué)校,乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的3倍.甲、乙兩同學(xué)同時(shí)從家出發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到8分鐘.
(1)求乙騎自行車的速度;
(2)當(dāng)甲到達(dá)學(xué)校時(shí),乙同學(xué)離學(xué)校還有多遠(yuǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com