精英家教網 > 初中數學 > 題目詳情
已知:關于x的方程2x2+3x-m+1=0的兩個實數根的倒數和為3,求m的值.
【答案】分析:根據一元二次方程根與系數的關系可以得到:x1+x2=-,x1x2=.根據+=,代入即可得到關于m的方程,從而求解.
解答:解:設x1,x2是方程的兩個實數根,
,
又∵
,

∴-3=3-3m,
∴m=2,
又∵當m=2時,原方程的△=17>0,
∴m的值為2.
點評:本題考查了一元二次方程根與系數的關系及根的判別式,將根與系數的關系與代數式變形相結合解題是一種經常使用的解題方法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:關于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實數量,方程總有實數根;
(2)若二次函數y1=mx2-3(m-1)x+2m-3的圖象關于y軸對稱;
①求二次函數y1的解析式;
②已知一次函數y2=2x-2,證明:在實數范圍內,對于x的同一個值,這兩個函數所對應的函數值y1≥y2均成立;
(3)在(2)條件下,若二次函數y3=ax2+bx+c的圖象經過點(-5,0),且在實數范圍內,對于x的同一個值,這三個函數所對應的函數值y1≥y3≥y2均成立,求二次函數y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

17、已知:關于x的方程x2+2x=3-4k有兩個不相等的實數根(其中k為實數)
(1)則k的取值范圍是
k<1
;
(2)若k為非負整數,則此時方程的根是
-3或1

查看答案和解析>>

科目:初中數學 來源: 題型:

3、已知:關于x的方程x2-kx-2=0.
(1)求證:方程有兩個不相等的實數根;
(2)設方程的兩根為x1,x2,如果2(x1+x2)>x1x2,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:關于x的方程ax2-(1-3a)x+2a-1=0,求證:a取任何實數時,方程ax2-(1-3a)x+2a-1=0總有實數根.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:關于x的方程x2+kx-12=0,求證:方程有兩個不相等的實數根.

查看答案和解析>>

同步練習冊答案