【題目】疫情期間,甲廠欲購買某種無紡布生產口罩,A、B兩家無紡布公司各自給出了該種無紡布的銷售方案.

A公司方案:無紡布的價格y(萬元)與其重量x(噸)是如圖所示的函數(shù)關系;

B公司方案:無紡布不超過30噸時,每噸收費2萬元;超過30噸時,超過的部分每噸收費1.9萬元.

1)求如圖所示的yx的函數(shù)解析式;(不要求寫出定義域)

2)如果甲廠所需購買的無紡布是40噸,試通過計算說明選擇哪家公司費用較少.

【答案】1y1.95x+0.8;(2)在A公司購買費用較少.

【解析】

1)運用待定系數(shù)法解答即可;

2)把x40代入(1)的結論以及公司方案,分別求出每家公司所需的費用,再進行比較即可.

解:(1)設一次函數(shù)的解析式為ykx+b(k、b為常數(shù),k≠0)

由一次函數(shù)的圖象可知,其經過點(0,0.8)、(10,20.3)

代入得,

解得

這個一次函數(shù)的解析式為y1.95x+0.8

2)如果在A公司購買,所需的費用為:y1.95×40+0.878.8萬元;

如果在B公司購買,所需的費用為:2×30+1.9×(4030)79萬元;

∵78.879,

A公司購買費用較少.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(抗擊疫情)為了遏制新型冠狀病毒疫情的蔓延勢頭,各地教育部門在推遲各級學校開學時間的同時提出聽課不停學的要求,各地學校也都開展了遠程網絡教學,某校集中為學生提供四類在線學習方式:在線閱讀、在線聽課、在線答疑、在線討論,為了了解學生的需求,該校通過網絡對本校部分學生進行了你對哪類在線學習方式最感興趣的調查,并根據(jù)結果繪制成如下兩幅不完整的統(tǒng)計圖。

1)本次調查的人數(shù)有多少人?

2)請補全條形圖;

3)請求出“在線答疑”在扇形圖中的圓心角度數(shù);

4)小寧和小娟都參加了遠程網絡教學活動,請求出小寧和小娟選擇同一種學習方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2cm,點E、F在邊AD上運動,且AE=DFCFBDG,BEAGH.點H在圓弧上運動上,點H所運動的圓弧的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線分別與x軸、y軸相交于點BC,經過點B、C的拋物線x軸的另一個交點為A-1,0).

1)求這個拋物線的表達式;

2)已知點D在拋物線上,且橫坐標為2,求出△BCD的面積;

3)點P是直線BC上方的拋物線上一動點,過點PPQ垂直于x軸,垂足為Q.是否存在點P,使得以點A、PQ為頂點的三角形與BOC相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,AB為⊙O的直徑,C為⊙O上一點,DBC延長線一點,且BC=CD,直線CE與⊙O相切于點C,與AD相交于點E

1)求證:CEAD;

2)如圖2,設BE與⊙O交于點FAF的延長線與CE交于點P

①求證:∠PCF=CBF;

②若PF=6tanPEF=,求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD⊙O的內接四邊形,BC⊙O的直徑,OE⊥BCAB于點E,若BE=2AE,則∠ADC =_________°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的內切圓⊙OBCCA、AB分別相切于點D、E、F,且AB5,BC13CA12,則陰影部分(即四邊形AEOF)的面積是( )

A.4B.6.25C.7.5D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,規(guī)定:拋物線的伴隨直線為.例如:拋物線的伴隨直線為,即

1)在上面規(guī)定下,拋物線的頂點為    .伴隨直線為    ;拋物線與其伴隨直線的交點坐標為        ;

2)如圖,頂點在第一象限的拋物線與其伴隨直線相交于點(在點的右側)軸交于點

①若的值;

②如果點是直線上方拋物線的一個動點,的面積記為,當取得最大值時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一方有難,八方支援.四川汶川大地震牽動著全國人民的心,我市某醫(yī)院準備從甲、乙、丙三位醫(yī)生和A、B兩名護士中選取一位醫(yī)生和一名護士支援汶川.

1)若隨機選一位醫(yī)生和一名護士,用樹狀圖(或列表法)表示所有可能出現(xiàn)的結果;

2)求恰好選中醫(yī)生甲和護士A的概率.

查看答案和解析>>

同步練習冊答案