【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y=x0)與AB相交于點(diǎn)D,與BC相交于點(diǎn)E,若BD=3AD,且ODE的面積是9,則k=( 。

A.B.9C.D.3

【答案】C

【解析】

根據(jù)所給的三角形面積等于長方形面積減去三個(gè)直角三角形的面積,然后即可求出B的橫縱坐標(biāo)的乘積,即為反比例函數(shù)的比例系數(shù).

解:∵四邊形OABC是矩形,

ABOC,OABC

設(shè)B點(diǎn)的坐標(biāo)為(ab

BD3AD

D,b

∵點(diǎn)DE在反比例函數(shù)的圖像上,

k

Ea,

SODES矩形OABCSAODSOCESBDEab····(b)=9

ab9

abk24

k

k

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2-(2m3xm220

1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;

2)若方程兩實(shí)數(shù)根分別為,且滿足,求實(shí)數(shù)m的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線軸的負(fù)半軸于點(diǎn),交軸的正半軸于點(diǎn),交軸于點(diǎn),且

的值;

如圖1,點(diǎn)在第四象限的拋物線上,橫坐標(biāo)為連接,交軸于點(diǎn),設(shè),求之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

如圖2,在的條件下,連接,交軸于點(diǎn),點(diǎn)在線段上,射線于點(diǎn),點(diǎn)在第二象限的拋物線上,連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接,若,,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育老師統(tǒng)計(jì)了七年級(jí)甲、乙兩個(gè)班女生的身高,并繪制了以下不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中信息,解決下列問題:

1)兩個(gè)班共有女生多少人?

2)將頻數(shù)分布直方圖補(bǔ)充完整;

3)求扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角度數(shù);

4)身高在5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機(jī)抽取兩人補(bǔ)充到學(xué)校國旗隊(duì).請(qǐng)用列表法或畫樹狀圖法,求這兩人來自同一班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)某中學(xué)1000名學(xué)生參加了環(huán)保知識(shí)競(jìng)賽,為了了解本次競(jìng)賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問題:

成績分組

頻數(shù)

頻率

50≤x<60

8

0.16

60≤x<70

12

a

70≤x<80

0.5

80≤x<90

3

0.06

90≤x≤100

b

c

合計(jì)

1

(1)寫出a,b,c的值;

(2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績不低于70分;

(3)在選取的樣本中,從競(jìng)賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識(shí)宣傳活動(dòng),求所抽取的2名同學(xué)來自同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A1,0),B﹣30)兩點(diǎn).

1)求該拋物線的解析式;

2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;

3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè)第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤是160花卉的平均每盆利潤是19,調(diào)研發(fā)現(xiàn):

①盆景每增加1盆景的平均每盆利潤減少2;每減少1,盆景的平均每盆利潤增加2;②花卉的平均每盆利潤始終不變.

小明計(jì)劃第二期培植盆景與花卉共100設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當(dāng)x取何值時(shí)第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

1)如圖1,分別求的值;

2)如圖2,點(diǎn)為第一象限的拋物線上一點(diǎn),連接并延長交拋物線于點(diǎn),,求點(diǎn)的坐標(biāo);

3)在(2)的條件下,點(diǎn)為第一象限的拋物線上一點(diǎn),過點(diǎn)軸于點(diǎn),連接、,點(diǎn)為第二象限的拋物線上一點(diǎn),且點(diǎn)與點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,連接,設(shè),點(diǎn)為線段上一點(diǎn),點(diǎn)為第三象限的拋物線上一點(diǎn),分別連接,滿足,,過點(diǎn)的平行線,交軸于點(diǎn),求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的邊AC為直徑的O恰為ABC的外接圓,∠ABC的平分線交O于點(diǎn)D,過點(diǎn)DDEACBC的延長線于點(diǎn)E

1)求證:DE是⊙O的切線;

2)若AB4,BC2,求DE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案