【題目】已知x1,x2是關(guān)于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實(shí)根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個(gè)三角形的周長.
【答案】(1)m的值為6;(2)17.
【解析】試題分析:
(1)由題意和根與系數(shù)的關(guān)系可得:x1+x2=2(m+1),x1x2=m2+5;由(x1-1)(x2-1)=28,可得:x1x2-(x1+x2)=27;從而得到:m2+5-2(m+1)=27,解方程求得m的值,再由“一元二次方程根的判別式”進(jìn)行檢驗(yàn)即可得到m的值;
(2)①當(dāng)7為腰長時(shí),則方程的兩根中有一根為7,代入方程可解得m的值(此時(shí)m的取值需滿足根的判別式△ ),將m的值代入原方程,可求得兩根(此時(shí)兩根和7需滿足三角形三邊之間的關(guān)系),從而可求得等腰三角形的周長;
②當(dāng)7為底邊時(shí),則方程的兩根相等,由此可得“根的判別式△=0”,從而可得關(guān)于m的方程,解方程求得m的值,代入原方程可求得方程的兩根,再由三角形三邊之間的關(guān)系檢驗(yàn)即可.
試題解析:
(1)(x1-1)(x2-1)=28,即x1x2-(x1+x2)=27,而x1+x2=2(m+1),x1x2=m2+5,
∴m2+5-2(m+1)=27,
解得m1=6,m2=-4,
又Δ=[-2(m+1)]2-4×1×(m2+5)≥0時(shí),m≥2,
∴m的值為6;
(2) 若7為腰長,則方程x2-2(m+1)x+m2+5=0的一根為7,
即72-2×7×(m+1)+m2+5=0,
解得m1=10,m2=4,
當(dāng)m=10時(shí),方程x2-22x+105=0,根為x1=15,x2=7,不符合題意,舍去.
當(dāng)m=4時(shí),方程為x2-10x+21=0,根為x1=3,x2=7,此時(shí)周長為7+7+3=17
若7為底邊,則方程x2-2(m+1)x+m2+5=0有兩等根,
∴Δ=0,解得m=2,此時(shí)方程為x2-6x+9=0,根為x1=3,x2=3,3+3<7,不成立,
綜上所述,三角形周長為17
點(diǎn)睛:(1)一元二次方程根與系數(shù)的關(guān)系成立的前提條件是方程要有實(shí)數(shù)根,即“根的判別式△ ”;(2)涉及三角形邊長的問題中,解得的結(jié)果都需要用“三角形三邊之間的關(guān)系”檢驗(yàn),看三條線段能否圍成三角形.
【題型】解答題
【結(jié)束】
21
【題目】如圖,已知在△ABC中,D是AB的中點(diǎn),且∠ACD=∠B,若 AB=10,求AC的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知EF⊥AB,CD⊥AB,下列說法:①EF∥CD;②∠B+∠BDG=180°;③若∠1=∠2,則∠1=∠BEF;④若∠ADG=∠B,則∠DGC+∠ACB=180°,其中說法正確的是( 。
A. ①②B. ③④C. ①②③D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知菱形的邊長為6,, 點(diǎn)、分別是邊、上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且.
(1)求證: 是等邊三角形;
(2)點(diǎn)、在運(yùn)動(dòng)過程中,四邊形的面積是否變化,如果變化,請說明理由;如果不變,請求出面積;
(3)當(dāng)點(diǎn)在什么位置時(shí),的面積最大,并求出此時(shí)面積的最大值;
(4)如圖2,連接分別與邊、交于、,當(dāng)時(shí),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,邊長為6,D是BC邊上的動(dòng)點(diǎn),∠EDF=60°.
(1)求證:△BDE∽△CFD;
(2)當(dāng)BD=1,CF=3時(shí),求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】口袋中裝有四個(gè)大小完全相同的小球,把它們分別標(biāo)號1,2,3,4,從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再從中隨機(jī)摸出一個(gè)球,利用樹狀圖或者表格求出兩次摸到的小球數(shù)和等于4的概率.
【答案】 .
【解析】試題分析:
根據(jù)題意列表如下,由表可以得到所有的等可能結(jié)果,再求出所有結(jié)果中,兩次所摸到小球的數(shù)字之和為4的次數(shù),即可計(jì)算得到所求概率.
試題解析:
列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表可知,共有16種等可能事件,其中兩次摸到的小球數(shù)字之和等于4的有(3,1)、(2,2)和(1,3),共計(jì)3種,
∴P(兩次摸到小球的數(shù)字之和等于4)=.
【題型】解答題
【結(jié)束】
23
【題目】小亮同學(xué)想利用影長測量學(xué)校旗桿AB的高度,如圖,他在某一時(shí)刻立1米長的標(biāo)桿測得其影長為1.2米,同時(shí)旗桿的投影一部分在地面上BD處,另一部分在某一建筑的墻上CD處,分別測得其長度為9.6米和2米,求旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,轉(zhuǎn)盤被等分成六個(gè)扇形,并在上面依次寫上數(shù)字1、2、3、4、5、6.
(1)若自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)它停止轉(zhuǎn)動(dòng)時(shí),指針指向奇數(shù)區(qū)的概率是多少?
(2)若自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)它停止轉(zhuǎn)動(dòng)時(shí),指針指向的數(shù)小于或等于4的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點(diǎn)M,AC與EF交于點(diǎn)N,BC與EF交于點(diǎn)P.
(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時(shí),四邊形ABPF是什么樣的特殊四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)中學(xué)生體質(zhì)健康綜合評定成績?yōu)?/span>分,滿分為100分,規(guī)定:為級,為級,為級,為級.現(xiàn)隨機(jī)抽取某中學(xué)部分學(xué)生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中的信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了__________名學(xué)生;
(2)扇形統(tǒng)計(jì)圖中,________%,級對應(yīng)的圓心角為______度;
(3)若該中學(xué)共有學(xué)生1200名,請你利用你所學(xué)的統(tǒng)計(jì)知識,估計(jì)綜合評定成績?yōu)?/span>級的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于半圓,AB是直徑,過A作直線MN,若∠MAC=∠ABC.
(1)求證:MN是半圓的切線;
(2)設(shè)D是弧AC的中點(diǎn),連結(jié)BD交AC 于G,過D作DE⊥AB于E,交AC于F.求證:FD=FG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com