如圖,P為x軸正半軸上一點(diǎn),過點(diǎn)P作x軸的垂線,交函數(shù)的圖象于點(diǎn)A,交函數(shù)的圖象于點(diǎn)B,過點(diǎn)B作x軸的平行線,交于點(diǎn)C,連接AC.
(1)當(dāng)點(diǎn)P的坐標(biāo)為(2,0)時(shí),求△ABC的面積;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(t,0)時(shí),△ABC的面積是否隨t值的變化而變化?

【答案】分析:(1)根據(jù)點(diǎn)P的坐標(biāo)和函數(shù)的解析式可以分別求得點(diǎn)A、B、C的坐標(biāo),進(jìn)一步求得三角形的面積;
(2)根據(jù)(1)中的方法進(jìn)行求解,看最后的結(jié)果是否為一個(gè)定值即可.
解答:解:(1)根據(jù)題意,得點(diǎn)A、B的橫坐標(biāo)和點(diǎn)P的橫坐標(biāo)相等,即為2.
∵點(diǎn)A在函數(shù)的雙曲線上,
∴A點(diǎn)縱坐標(biāo)是,
∵點(diǎn)B在函數(shù)的圖象上
∴B點(diǎn)的縱坐標(biāo)是2.
∴點(diǎn)C的縱坐標(biāo)是2,
∵點(diǎn)C在函數(shù)的雙曲線上
∴C點(diǎn)橫坐標(biāo)是
∴AB=,BC=
∴△ABC的面積是:=

(2)根據(jù)(1)中的思路,可以分別求得點(diǎn)A(t,),B(t,),C(,).
∴AB=,BC=t,
∴△ABC的面積是
∴△ABC的面積不會(huì)隨著t的變化而變化.
點(diǎn)評(píng):解答此題時(shí)要能夠根據(jù)解析式熟練地求得各個(gè)點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)計(jì)算線段的長(zhǎng)度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,P為x軸正半軸上一點(diǎn),過點(diǎn)P作x軸的垂線,交函數(shù)y=
1
x
(x>0)
的圖象于點(diǎn)A,交函精英家教網(wǎng)數(shù)y=
4
x
(x>0)
的圖象于點(diǎn)B,過點(diǎn)B作x軸的平行線,交y=
1
x
(x>0)
于點(diǎn)C,連接AC.
(1)當(dāng)點(diǎn)P的坐標(biāo)為(2,0)時(shí),求△ABC的面積;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(t,0)時(shí),△ABC的面積是否隨t值的變化而變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,P為x軸正半軸上一點(diǎn),半圓P交x軸于A、B兩點(diǎn),交y軸于C點(diǎn),弦AE
分別交OC、CB于D、F.已知
AC
=
CE
,
(1)求證:AD=CD;
(2)若DF=
5
4
,tan∠ECB=
3
4
,求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(3)設(shè)M為x軸負(fù)半軸上一點(diǎn),OM=
1
2
AE,是否存在過點(diǎn)M的直線,使該直線精英家教網(wǎng)與(2)中所得的拋物線的兩個(gè)交點(diǎn)到y(tǒng)軸距離相等?若存在,求出這條直線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在x軸正半軸上以O(shè)B為斜邊、BC為直角邊向第一象限分別作等腰Rt△AOB和Rt△CDB. OA=8,BC=4,在∠ABD內(nèi)有一半徑為1,且與AB、BD相切的⊙P.
(1)寫出⊙P的圓心坐標(biāo);
(2)若△CDB在x軸上以每秒2個(gè)單位的速度向左勻速平移,⊙P同時(shí)相應(yīng)在BA和BD上滑動(dòng),且保持與BA、BD相切,至⊙P終止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,試用含t的代數(shù)式表示P點(diǎn)坐標(biāo);并證明P點(diǎn)的橫、縱坐標(biāo)之和為定值;
(3)如圖2,過D點(diǎn)作x軸的平行線交AB于E,D’B’與AB交于M,在滿足(2)的前提下,t取何值時(shí),⊙P可成為△D’EM的內(nèi)切圓;如果⊙P與DE相切于點(diǎn)F,求△AEF的面積.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,A為x軸正半軸上一點(diǎn),B為OA的中點(diǎn),線段OB、AB的垂直平分線分別交雙曲線y=
kx
(x>0)于P、Q兩點(diǎn).若S四邊形OAQP=4,則k=
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•倉(cāng)山區(qū)模擬)如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)是C(2,-1),與x軸交于點(diǎn)A(1,0),其對(duì)稱軸與x軸相交于點(diǎn)F.
(1)求拋物線解析式;
(2)連接AC,過點(diǎn)A做AC的垂線交拋物線于點(diǎn)D,交對(duì)稱軸于E,求直線AD的解析式;
(3)在(2)的條件下,連接BD,若點(diǎn)P在x軸正半軸,且以A、E、P為頂點(diǎn)的三角形與△ABD相似,求出所有滿足條件的P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案