已知點A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函數(shù)y= 的圖象上,則y1、y2、y3的大小關(guān)系是( 。
A.y3<y1<y2
B.y1<y2<y3
C.y2<y1<y3
D.y3<y2<y1
D
分別把各點代入反比例函數(shù)y=求出y1、y2、y3的值,再比較出其大小即可。也可以畫出函數(shù)的大致圖像,根據(jù)函數(shù)的增減性來判斷.
解:∵點A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函數(shù)y=的圖象上,
∴y1==6;y2==3;y3==-2,
∵6>3>-2,
∴y1>y2>y3
故選D.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

定義:如果一個y與x的函數(shù)圖象經(jīng)過平移后能與某反比例函數(shù)的圖象重合,那么稱這個函數(shù)是y與x的“反比例平移函數(shù)”.例如:的圖象向左平移2個單位,再向下平移1個單位得到的圖象,則是y與x的“反比例平移函數(shù)”.
(1)若矩形的兩邊分別是2cm、3cm,當這兩邊分別增加x(cm)、y(cm)后,得到的新矩形的面積為8cm2,求y與x的函數(shù)表達式,并判斷這個函數(shù)是否為“反比例平移函數(shù)”.
(2)如圖,在平面直角坐標系中,點O為原點,矩形OABC的頂點A、C的坐標分別為(9,0)、(0,3).點D是OA的中點,連接OB、CD交于點E,“反比例平移函數(shù)”的圖象經(jīng)過B、E兩點.則這個“反比例平移函數(shù)”的表達式為           ;這個“反比例平移函數(shù)”的圖象經(jīng)過適當?shù)淖儞Q與某一個反比例函數(shù)的圖象重合,請寫出這個反比例函數(shù)的表達式.
(3)在(2)的條件下,已知過線段BE中點的一條直線l交這個“反比例平移函數(shù)”圖象于P、Q兩點(P在Q的右側(cè)),若B、E、P、Q為頂點組成的四邊形面積為16,請求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,直線y=2x+4與軸、軸分別交于A、B兩點,以AB為邊在第二象限作正方形ABCD,點D在雙曲線上,將正方形ABCD沿軸正方向平移個單位長度后,點C恰好落在此雙曲線上,則的值是(     ).
A.1       B.2      C.3        D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,反比例函數(shù)y=(x>0)的圖象和矩形ABCD在第一象限,AD∥x軸,且AB=2,AD=4,點A的坐標為(2,6).若將矩形向下平移,使矩形的兩個頂點恰好同時落在反比例函數(shù)的圖象上,則k的值是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知y=y1-y2,其中y1是x的反比例函數(shù),y2是x2的正比例函數(shù),且x=1時y=3,x=-2時y=-15.
求:(1)y與x之間的函數(shù)關(guān)系式;
(2)當x=2時y的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在函數(shù)y=-的圖象上有三個點為(x1,y1)、(x2,y2)、(x3,y3),若y1<0<y2<y3,則x1,x2,x3的大小關(guān)系是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形OABC的頂點A,C分別在x,y軸的正半軸上,點D為對角線OB的中點,點E(4,n)在邊AB上,反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點D,E,且tan∠BOA=.

(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點F,將矩形折疊,使點O與點F重合,折痕分別與x,y軸正半軸交于點H,G,求線段OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知矩形的面積為20 cm2,設(shè)該矩形一邊長為y cm,另一邊的長為x cm,則y與x之間的函數(shù)圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

>0,<0時,反比例函數(shù)的圖象在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案