閱讀理解題.

閱讀材料:當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.

例如:由拋物線y=x2-2mx+m2+2m-1, 、

有y=(x-m)2+2m-1.          ②

∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1),

當(dāng)m的值變化時(shí),x、y的值也隨之變化,因而y值也隨x值的變化而變化.

將③代入④,得y=2x-1.        、

可見,不論m取任何實(shí)數(shù),拋物線頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿足關(guān)系式:y=2x-1.

解答問題:

(1)在上述過程中,由①到②所用的數(shù)學(xué)方法是________,其中運(yùn)用了________公式;

由③、④得到⑤所用的數(shù)學(xué)方法是________.

(2)根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-3m+1頂點(diǎn)的縱坐標(biāo)y橫坐標(biāo)x之間的關(guān)系式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

閱讀理解題
請閱讀下列不等式的解法,按要求解不等式.
不等式
x-1
x-2
>0
的解的過程如下:
解:根據(jù)題意,得
x-1>0
x-2>0
①或
x-1<0
x-2<0

解不等式組①,得x>2;解不等式組②,得x<1.所以原不等式的解為x>2或x<1.
請你按照上述方法求出不等式
x-8
x-6
<0的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(閱讀理解題)先閱讀材料,然后解答問題.
聰聰和明明在解一元二次方程4(2x-1)2-36(x+1)2=0時(shí),采用了不同的方法.
聰聰:將方程移項(xiàng)得4(2x-1)2=36(x+1)2
直接開平方得2(2x-1)=±6(x+1),
解得x1=-4,x2=-
2
5

明明:4(2x-1)2-36(x+1)2=0
變形得[2(2x-1)]2-[6(x+1)]2=0
整理得
 

∴-2x-8=0或10x+4=0.
∴x1=-4,x2=-
2
5

(1)在空白處填上適當(dāng)內(nèi)容,聰聰解方程運(yùn)用
 
,明明運(yùn)用
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀理解題
請閱讀下列不等式的解法,按要求解不等式.
不等式數(shù)學(xué)公式的解的過程如下:
解:根據(jù)題意,得數(shù)學(xué)公式①或數(shù)學(xué)公式
解不等式組①,得x>2;解不等式組②,得x<1.所以原不等式的解為x>2或x<1.
請你按照上述方法求出不等式數(shù)學(xué)公式<0的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀理解題
請閱讀下列不等式的解法,按要求解不等式.
不等式
x-1
x-2
>0
的解的過程如下:
根據(jù)題意,得
x-1>0
x-2>0
①或
x-1<0
x-2<0

解不等式組①,得x>2;解不等式組②,得x<1.所以原不等式的解為x>2或x<1.
請你按照上述方法求出不等式
x-8
x-6
<0的解.

查看答案和解析>>

同步練習(xí)冊答案