如圖,馬路的兩邊CF,DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A,B兩點分別表示車站和超市.CD與AB所在直線互相平行,且都與馬路的兩邊垂直,馬路寬20米,A,B相距62米,∠A=67°,∠B=37°.
(1)求CD與AB之間的距離;
(2)某人從車站A出發(fā),沿折線A→D→C→B去超市B.求他沿折線A→D→C→B到達超市比直接橫穿馬路多走多少米.
(參考數(shù)據(jù):sin67°≈數(shù)學公式,cos67°≈數(shù)學公式,tan67°≈數(shù)學公式,sin37°≈數(shù)學公式,cos37°≈數(shù)學公式,tan37°≈數(shù)學公式

解:(1)CD與AB之間的距離為x,
則在Rt△BCF和Rt△ADE中,
=tan37°,=tan67°,
∴BF==x,AE==x,
又∵AB=62,CD=20,
x+x+20=62,
解得:x=24,
答:CD與AB之間的距離為24米;

(2)在Rt△BCF和Rt△ADE中,
∵BC===40,
AD===26,
∴AD+DC+CB-AB=40+20+26-62=24(米),
答:他沿折線A→D→C→B到達超市比直接橫穿馬路多走24米.
分析:(1)設(shè)CD與AB之間的距離為x,則在Rt△BCF和Rt△ADE中分別用x表示BF,AE,又AB=AE+EF+FB,代入即可求得x的值;
(2)在Rt△BCF和Rt△ADE中,分別求出BC、AD的長度,求出AD+DC+CB-AB的值即可求解.
點評:本題考查了解直角三角形,難度適中,解答本題的關(guān)鍵是在直角三角形中運用解直角三角形的知識求出各邊的長度.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•青島)如圖,馬路的兩邊CF,DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A,B兩點分別表示車站和超市.CD與AB所在直線互相平行,且都與馬路的兩邊垂直,馬路寬20米,A,B相距62米,∠A=67°,∠B=37°.
(1)求CD與AB之間的距離;
(2)某人從車站A出發(fā),沿折線A→D→C→B去超市B.求他沿折線A→D→C→B到達超市比直接橫穿馬路多走多少米.
(參考數(shù)據(jù):sin67°≈
12
13
,cos67°≈
5
13
,tan67°≈
12
5
,sin37°≈
3
5
,cos37°≈
4
5
,tan37°≈
3
4

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(山東青島卷)數(shù)學(解析版) 題型:解答題

如圖,馬路的兩邊CF、DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A、B兩點分別表示車站和超市。CD與AB所在直線互相平行,且都與馬路兩邊垂直,馬路寬20米,A,B相距62米,

∠A=67°,∠B=37°

(1)求CD與AB之間的距離;

(2)某人從車站A出發(fā),沿折線A→D→C→B去超市B,求他沿折線A→D→C→B到達超市比直接橫穿馬路多走多少米

(參考數(shù)據(jù):

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年山東省青島市中考數(shù)學試卷(解析版) 題型:解答題

如圖,馬路的兩邊CF,DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A,B兩點分別表示車站和超市.CD與AB所在直線互相平行,且都與馬路的兩邊垂直,馬路寬20米,A,B相距62米,∠A=67°,∠B=37°.
(1)求CD與AB之間的距離;
(2)某人從車站A出發(fā),沿折線A→D→C→B去超市B.求他沿折線A→D→C→B到達超市比直接橫穿馬路多走多少米.
(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈

查看答案和解析>>

同步練習冊答案