幾何模型:
條件:如下圖,
A、B是直線l同旁的兩個定點.問題:在直線l上確定一點P,使PA+PB的值最小.方法:作點
A關于直線l的對稱點,連結B交l于點P,則PA+PB=B的值最小(不必證明).模型應用:
(1)如圖,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連結BD,由正方形對稱性可知,B與D關于直線AC對稱.連結ED交AC于P,則PB+PE的最小值是________;
(2)如圖,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,則PA+PC的最小值是________;
(3)如圖,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上
的動點,則△PQR周長的最小值是________.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
5 |
5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
5 |
5 |
3 |
3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com