【題目】如圖,在矩形中,對(duì)角線、交于,垂足為,,那么的面積是(

A.B.C.D.

【答案】B

【解析】

過點(diǎn)CCFBDF.根據(jù)矩形的性質(zhì)得到∠ABE=∠CDF60°,ABCD,ADBC2,∠AEB=∠CFD90°.根據(jù)全等三角形的性質(zhì)得到AECF.解直角三角形得到OE,根據(jù)三角形的面積公式即可得到結(jié)論.

解:如圖:過點(diǎn)CCFBDF


∵矩形ABCD中,BC2,AEBD,
∴∠ABE=∠CDF60°,ABCD,ADBC2,∠AEB=∠CFD90°
∴△ABE≌△CDF,(AAS),
AECF
∵∠ABE=∠CDF60°,

∴∠ADE=∠CBF30°,

CFAEAD1,
BE =AE,

∵∠ABE60°,AO=BO,

∴△ABO是等邊三角形,

OE=BE=,
S△ECOOECF,
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象的對(duì)稱軸是直線,則下列理論:①, ,③,④,⑤當(dāng)時(shí), 的增大而減小,其中正確的是( ).

A. ①②③ B. ②③④ C. ③④⑤ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=9BC=12,DAB邊的中點(diǎn),PBC邊上一動(dòng)點(diǎn)(點(diǎn)P不與B、C重合),若以D、C、P為頂點(diǎn)的三角形與△ABC相似,則線段PC=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,菱形ABCD的頂點(diǎn)A、B軸上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)D軸的正半軸上,,點(diǎn)A的坐標(biāo)為.

(1)D點(diǎn)的坐標(biāo).

(2)求直線AC的函數(shù)關(guān)系式.

(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,按照的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為.為何值時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對(duì)角線AC相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù) y=ax2bxc(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:

(1)寫出方程ax2bxc0(a≠0)的實(shí)數(shù)解;

(2)若方程ax2bxck有兩個(gè)不相等的實(shí)數(shù)根,寫出 k的取值范圍;

(3)當(dāng)0x3 時(shí),寫出函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著柴靜紀(jì)錄片《穹頂之下》的播出,全社會(huì)對(duì)空氣污染問題越來(lái)越重視,空氣凈化器的銷量也大增,商社電器從廠家購(gòu)進(jìn)了A,B兩種型號(hào)的空氣凈化器,已知一臺(tái)A型空氣凈化器的進(jìn)價(jià)比一臺(tái)B型空氣凈化器的進(jìn)價(jià)多300元,用7500元購(gòu)進(jìn)A型空氣凈化器和用6000元購(gòu)進(jìn)B型空氣凈化器的臺(tái)數(shù)相同.

(1)求一臺(tái)A型空氣凈化器和一臺(tái)B型空氣凈化器的進(jìn)價(jià)各為多少元?

(2)在銷售過程中,A型空氣凈化器因?yàn)閮艋芰?qiáng),噪音小而更受消費(fèi)者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對(duì)B型空氣凈化器進(jìn)行降價(jià)銷售,經(jīng)市場(chǎng)調(diào)查,當(dāng)B型空氣凈化器的售價(jià)為1800元時(shí),每天可賣出4臺(tái),在此基礎(chǔ)上,售價(jià)每降低50元,每天將多售出1臺(tái),如果每天商社電器銷售B型空氣凈化器的利潤(rùn)為3200元,請(qǐng)問商社電器應(yīng)將B型空氣凈化器的售價(jià)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問題提出】如圖1,四邊形ABCD中,AD=CDABC=120°,ADC=60°,AB=2,BC=1,求四邊形ABCD的面積.

【嘗試解決】

旋轉(zhuǎn)是一種重要的圖形變換,當(dāng)圖形中有一組鄰邊相等時(shí),往往可以通過旋轉(zhuǎn)解決問題.

1)如圖2,連接 BD,由于AD=CD,所以可將DCB繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)60°,得到DAB′,則BDB′的形狀是

2)在(1)的基礎(chǔ)上,求四邊形ABCD的面積.

[類比應(yīng)用]如圖3,四邊形ABCD中,AD=CD,ABC=75°ADC=60°,AB=2BC=,求四邊形ABCD的面積.

考點(diǎn):幾何變換綜合題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新定義:對(duì)于關(guān)于的函數(shù),我們稱函數(shù)為函數(shù)ym分函數(shù)(其中m為常數(shù)).

例如:對(duì)于關(guān)于x一次函數(shù)分函數(shù)為

1)若點(diǎn)在關(guān)于x的一次函數(shù)分函數(shù)上,求的值;

2)寫出反比例函數(shù)分函數(shù)的圖象上yx的增大而減小的x的取值范圍: ;

3)若是二次函數(shù)關(guān)于x分函數(shù),

①當(dāng)時(shí),求y的取值范圍;

②當(dāng)時(shí),,則的取值范圍為 ;

③若點(diǎn),連結(jié),當(dāng)關(guān)于的二次函數(shù)分函數(shù),與線段MN有兩個(gè)交點(diǎn),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC8cmBC6cm,動(dòng)點(diǎn)M以每秒1cm的速度從點(diǎn)B向點(diǎn)C移動(dòng);同時(shí)動(dòng)點(diǎn)N3cm的速度從點(diǎn)CA移動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),兩點(diǎn)都停止移動(dòng),連接MN,設(shè)移動(dòng)時(shí)間為t秒.

1)當(dāng)t為何值時(shí),SMNCS四邊形ABMN?

2)當(dāng)t為何值時(shí),MNCABC相似?

查看答案和解析>>

同步練習(xí)冊(cè)答案