【題目】如圖,在平面直角坐標系xOy中,已知直線AC的解析式為y=﹣x+1,直線ACx軸于點C,交y軸于點A.

(1)若等邊△OBD的頂點D與點C重合,另一頂點B在第一象限內(nèi),直接寫出點B的坐標;

(2)過點Bx軸的垂線l,在l上是否存在一點P,使得△AOP的周長最?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)試在直線AC上求出到兩坐標軸距離相等的所有點的坐標.

【答案】(1)B(2,2);(2)點P的坐標為(2,);(3)在直線AC上求出到兩坐標軸距離相等的點的坐標為(,)或(﹣).

【解析】分析:如圖,在平面直角坐標系xOy中,已知直線AC的解析式為y=﹣x+1,直線ACx軸于點C,交y軸于點A.

(1)若等邊OBD的頂點D與點C重合,另一頂點B在第一象限內(nèi),直接寫出點B的坐標;

(2)過點Bx軸的垂線l,在l上是否存在一點P,使得AOP的周長最?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)試在直線AC上求出到兩坐標軸距離相等的所有點的坐標.

詳解:(1)在y=﹣x+1中,令y=0可求得x=4,

D(4,0),

BBEx軸于點E,如圖1,

∵△OBD為等邊三角形,

OE=OD=2,BE=OB=2,

B(2,2);

(2)∵等邊OBD是軸對稱圖形,對稱軸為l,

∴點O與點C關(guān)于直線l對稱,

∴直線AC與直線l的交點即為所求的點P,

x=2代入y=﹣x+1,得y=,

∴點P的坐標為(2,);

(3)設(shè)滿足條件的點為Q,其坐標為(m,﹣m+1),

由題意可得﹣m+1=m或﹣m+1=﹣m,

解得m=m=﹣

∴在直線AC上求出到兩坐標軸距離相等的點的坐標為(,)或(﹣,).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由相同的花盆按一定的規(guī)律組成的形如正多邊形的圖案,其中第1個圖形共有6個花盆,第2個圖形一共有12個花盆,第3個圖形一共有20個花盆,…,則第10個圖形中花盆的個數(shù)為( 。

A. 110B. 120C. 132D. 140

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上的A、B兩點所表示的數(shù)分別為ab,ab0ab0

1)原點O的位置在

A.點A的右邊

B.點B的左邊

C.點A與點B之間 ,且靠近點A

D.點A與點B之間 ,且靠近點B

2)若ab2,

①利用數(shù)軸比較大小,a 1,b 1;(填“>”、“<”或“=”).

②化簡:|a1|+|b1|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AE平分∠BAD,交BCE,過EEF⊥ADF,連接BFAEP,連接PD.

(1)求證:四邊形ABEF是正方形;

(2)如果AB=6,AD=8,求tan∠ADP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知線段a、b

(1)求作一個等腰△ABC,使底邊長BC=a,底邊上的高為b.(尺規(guī)作圖,只保留作圖痕跡)

(2)小明由此想到一個命題:等腰三角形底邊的中點到兩腰的距離相等,請你判斷這個命題的真假,如果是真命題請證明;如果是假命題請舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一邊長為36cm的正方形硬紙板進行適當?shù)募舨,折成一個長方體盒子(紙板的厚度忽略不計)

(1)如圖,若在正方形硬紙板的四角各剪一個同樣大小的正方形,將剩余部分折成一個無蓋的長方體盒子.

①要使折成的長方體盒子的底面積為676cm2,那么剪掉的正方形的邊長為多少?

②折成的長方形盒子的側(cè)面積是否有最大值?如果有,求出這個最大值和此時剪掉的正方形的邊長;如果沒有,說明理由.

(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個有蓋的長方體盒子,若折成的一個長方體盒子的表面積為880cm2,求此時長方體盒子的長、寬、高(只需求出符合要求的一種情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=BC,ABC=120°,AC=2,OABC的外接圓,D是優(yōu)弧AmC上任意一點(不包括A,C),記四邊形ABCD的周長為y,BD的長為x,則y關(guān)于x的函數(shù)關(guān)系式是(  )

A. y=x+4 B. y=x+4 C. y=x2+4 D. y=x2+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有兩個小機器人AB在一條筆直的道路上由西向東行走,兩機器人相距6cm,即AB6cm.其中機器人A的速度為3cm/s,機器人B的速度為2cm/s.設(shè)機器人B行走的時間為ts).

1)若兩機器人同時出發(fā),

t時,AB   cm;當t7時,AB   cm;

當兩機器人相距4cm時,求機器人B行走的時間t的值;

2)若機器人B先行走2s,機器人A再行走,當兩機器人相距10cm時,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,暑假快要到了,某市準備組織同學(xué)們分別到A,B,C,D四個地方進行夏令營活動,前往四個地方的人數(shù).

(1)去B地參加夏令營活動人數(shù)占總?cè)藬?shù)的40%,根據(jù)統(tǒng)計圖求去B地的人數(shù)?

(2)若一對姐弟中只能有一人參加夏令營,姐弟倆提議讓父親決定.父親說:現(xiàn)有4張卡片上分別寫有1,2,3,4四個整數(shù),先讓姐姐隨機地抽取一張后放回,再由弟弟隨機地抽取一張.若抽取的兩張卡片上的數(shù)字之和是5的倍數(shù)則姐姐參加,若抽取的兩張卡片上的數(shù)字之和是3的倍數(shù)則弟弟參加.用列表法或樹形圖分析這種方法對姐弟倆是否公平?

查看答案和解析>>

同步練習冊答案