【題目】如圖,邊長為a的等邊△ACB中,E是對稱軸AD上一個動點,連EC,將線段EC繞點C逆時針旋轉(zhuǎn)60°得到MC,連DM,則在點E運動過程中,DM的最小值是。

【答案】1.5
【解析】解:如圖,取AC的中點G,連接EG,

∵旋轉(zhuǎn)角為60°,

∴∠ECD+∠DCF=60°,

又∵∠ECD+∠GCE=∠ACB=60°,

∴∠DCF=∠GCE,

∵AD是等邊△ABC的對稱軸,

∴CD= BC,

∴CD=CG,

又∵CE旋轉(zhuǎn)到CF,

∴CE=CF,

在△DCF和△GCE中,

∴△DCF≌△GCE(SAS),

∴DF=EG,

根據(jù)垂線段最短,EG⊥AD時,EG最短,即DF最短,

此時∵∠CAD= ×60°=30°,AG= AC= ×6=3,

∴EG= AG= ×3=1.5,

∴DF=1.5.

所以答案是:1.5.

【考點精析】利用垂線段最短和等邊三角形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知連接直線外一點與直線上各點的所有線段中,垂線段最短;現(xiàn)實生活中開溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應(yīng)用;等邊三角形的三個角都相等并且每個角都是60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上的AB、C、D四點所表示的數(shù)分別是a、b、c、d,且(a+16)2+(d+12)2=|b8||c10|

1)求a、bc、d的值;

2)點A,B沿數(shù)軸同時出發(fā)相向勻速運動,4秒后兩點相遇,點B的速度為每秒2個單位長度,求點A的運動速度;

3A,B兩點以(2)中的速度從起始位置同時出發(fā),向數(shù)軸正方向運動,與此同時,C點以每秒1個單位長度的速度向數(shù)軸正方向開始運動,若t秒時有2AB=CD,求t的值;

4A,B兩點以(2)中的速度從起始位置同時出發(fā),相向而行當(dāng)A點運動到C點時,迅速以原來速度的2倍返回,到達(dá)出發(fā)點后,保持改變后的速度又折返向C點運動;當(dāng)B點運動到A點的起始位置后停止運動.當(dāng)B點停止運動時,A點也停止運動.求在此過程中,AB兩點同時到達(dá)的點在數(shù)軸上對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將兩塊三角板的直角頂點重合.

1)寫出以C為頂點的相等的角;

2)若∠ACB=150°,請直接寫出∠DCE的度數(shù);

3)寫出∠ACB與∠DCE之間所具有的數(shù)量關(guān)系;

4)當(dāng)三角板ACD繞點C旋轉(zhuǎn)時,你所寫出的(3)中的關(guān)系是否變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=BC,∠ABC=45°,點DAC的中點,連接BD,作AEBCE,交BD于點F,點GBC的中點,連接FG,過點BBHABFG的延長線于H

1)若AB=3,求AF的長;

2)求證;BH+2CE=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,點A46).

1)如圖①,過點AAB軸,垂足為B,則三角形AOB的面積為

2)如圖②,將線段OA向右平移3個單位長度,再向下平移1個單位長度,得到線段

①求四邊形的面積;

②若P是射線OA上的一動點,連接、,請畫出圖形,并直接寫出,的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲布袋中有三個紅球,分別標(biāo)有數(shù)字1,2,3;乙布袋中有三個白球,分別標(biāo)有數(shù)字2,3,4.這些球除顏色和數(shù)字外完全相同.小亮從甲袋中隨機(jī)摸出一個紅球,小剛從乙袋中隨機(jī)摸出一個白球.
(1)用畫樹狀圖(樹形圖)或列表的方法,求摸出的兩個球上的數(shù)字之和為6的概率;
(2)小亮和小剛做游戲,規(guī)則是:若摸出的兩個球上的數(shù)字之和為奇數(shù),小亮勝;否則,小剛勝.你認(rèn)為這個游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字,解答問題.

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?

事實上,小明的表示方法是有道理,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.

請解答:(1)若的整數(shù)部分為,小數(shù)部分為,求的值.

2)已知:,其中是整數(shù),且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點A、B分別在x、y軸上,點B的坐標(biāo)為(0,1),∠BAO=30°.

(1)求AB的長度;

(2)以AB為一邊作等邊ABE,作OA的垂直平分線MN交AB的垂線AD于點D.求證:BD=OE;

(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用標(biāo)桿 測量建筑物的高度,標(biāo)桿 ,測得 , ,則樓高 為=

查看答案和解析>>

同步練習(xí)冊答案