【題目】如圖,一次函數(shù)y1=kx+b的圖象與x軸、y軸分別交于點(diǎn)A、B,與一次函數(shù)y2=x的圖象交于點(diǎn)M,點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)M的橫坐標(biāo)為2,過(guò)點(diǎn)P(a,0),作x軸的垂線,分別交函數(shù)y=kx+b和y=x的圖象于點(diǎn)C、D.
(1)求一次函數(shù)y1=kx+b的表達(dá)式;
(2)若點(diǎn)M是線段OD的中點(diǎn),求a的值.
【答案】
(1)解:∵M(jìn)的橫坐標(biāo)為2,點(diǎn)M在直線y=x上,
∴y=2,
∴M(2,2)
把M(2,2)、A(6,0)代入y1=kx+b中,
可得: ,
解得:
∴函數(shù)的表達(dá)式為:y1=﹣ x+3
(2)解:∵PD⊥x軸,
∴PC∥OB
∴∠BOM=∠CDM,
∵點(diǎn)M是線段CD的中點(diǎn),
∴MO=MD
在△MBO與△MCD中
∴△MBO≌△MCD(ASA)
∴OB=CD
當(dāng)x=0時(shí),
y1= x+3=3,
∴OB=2,
∴DC=3,
當(dāng)x=a時(shí),
y1=﹣ x+3=3﹣ a,
∴y2=x=a
即D(a,a),C(a,﹣ a+3)
∴DC=a﹣(﹣ a+3)= a﹣3=3,
∴a=4
【解析】(1)先求出M的坐標(biāo),然后將M與A的坐標(biāo)代入y1=kx+b中,即可求出k與b的值.(2)根據(jù)條件先證明△MBO≌△MCD(ASA),由此可知OB=CD,分別求出OB與CD的長(zhǎng)度即可求出a的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列所給的條件中,能確定相似的有( )
(1)兩個(gè)半徑不相等的圓;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等邊三角形;(5)所有的等腰梯形;(6)所有的正六邊形.
A.3個(gè);B.4個(gè);C.5個(gè);D.6個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y是x的一次函數(shù),下表中給出了x與y的部分對(duì)應(yīng)值,則m的值是 .
x | ﹣1 | 2 | 6 |
y | 5 | ﹣1 | m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的括號(hào)里:
﹣8,0.275, ,0,﹣1.04,﹣(﹣3),﹣ ,|﹣2|
正數(shù)集合{…}
負(fù)整數(shù)集合{…}
分?jǐn)?shù)集合{…}
負(fù)數(shù)集合{…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折疊長(zhǎng)方形紙片ABCD,使點(diǎn)D落在邊BC上的點(diǎn)F處,折痕為AE,AB=CD=6,AD=BC=10,試求EC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一件羽絨服先按成本提高50%標(biāo)價(jià),再以8折(標(biāo)價(jià)的80%)出售,結(jié)果獲利250元.若設(shè)這件羽絨服的成本是x元,根據(jù)題意,可得到的方程是( )
A.x(1+50%)×80%=x﹣250
B.x(1+50%)×80%=x+250
C.(1+50%x)×80%=x﹣250
D.(1+50%x)×80%=250﹣x
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做“朋友三角形”.
性質(zhì):“朋友三角形”的面積相等.
如圖1,在△ABC中,CD是AB邊上的中線.
那么△ACD和△BCD是“朋友三角形”,并且S△ACD=S△BCD .
應(yīng)用:如圖2,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=AD=4,BC=6,點(diǎn)E在BC上,點(diǎn)F在AD上,BE=AF,AE與BF交于點(diǎn)O.
(1)求證:△AOB和△AOF是“朋友三角形”;
(2)連接OD,若△AOF和△DOF是“朋友三角形”,求四邊形CDOE的面積.
拓展:如圖3,在△ABC中,∠A=30°,AB=8,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“朋友三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的 ,則△ABC的面積是(請(qǐng)直接寫(xiě)出答案).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com