【題目】如圖,等腰ABC中,已知ACBC2, AB4,作∠ACB的外角平分線CF,點E從點B沿著射線BA以每秒2個單位的速度運動,過點EBC的平行線交CF于點F

1)求證:四邊形BCFE是平行四邊形;

2)當點E是邊AB的中點時,連接AF,試判斷四邊形AECF的形狀,并說明理由;

3)設運動時間為t秒,是否存在t的值,使得以EFC的其中兩邊為鄰邊所構造的平行四邊形恰好是菱形?不存在的,試說明理由;存在的,請直接寫出t的值.答:t________

【答案】1)見解析;(2)四邊形AECF是矩形,理由見解析;(3秒或5秒或2

【解析】

1)已知EFBC,結合已知條件利用兩組對邊分別平行證明BCFE是平行四邊形;因為AC=BC,等角對等邊,得∠B=∠BACCF平分∠ACH,則∠ACF=∠FCH,結合∠ACH=∠B+BAC=∠ACF+FCH,等量代換得∠FCH=∠B,則同位角相等兩直線平行,得BECF,結合EFBC,證得四邊形BCFE是平行四邊形;

2)先證∠AED=90°,再證四邊形AECF是平行四邊形,則四邊形AECF是平行四邊形是矩形;ACBC,EAB的中點,由等腰三角形三線合一定理知CEAB,因為四邊形BCFE是平行四邊形,得CFBEAEAECF,一組對邊平行且相等,且有一內角是直角,則四邊形AECF是矩形;

3)分三種情況進行①以EFCF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,則鄰邊BE=BC,這時根據(jù)S=vt=2t=, 求出t即可;②以CECF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,過CCDABD,AC=BC,三線合一則BD的長可求,在RtBDC中運用勾股定理求出CD的長,把ED長用含t的代數(shù)式表示出來,現(xiàn)知EG=CF=EC=EB=2t,在RtEDC中,利用勾股定理列式即可求出t;③以CEEF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,則CAAFBC,此時EA重合,則2t=AB=4, 求得t值即可.

1)證明:如圖1,∵ACBC,

∴∠B=∠BAC,

CF平分∠ACH

∴∠ACF=∠FCH,

∵∠ACH=∠B+BAC=∠ACF+FCH,

∴∠FCH=∠B,

BECF,

EFBC,

∴四邊形BCFE是平行四邊形

2)解:四邊形AECF是矩形,理由是:

如圖2,∵EAB的中點,ACBC,

CEAB

∴∠AEC90°,

由(1)知:四邊形BCFE是平行四邊形,

CFBEAE,

AECF,

∴四邊形AECF是矩形

3秒或5秒或2

分三種情況:

①以EFCF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,如圖3

BEBC,即2t2

t ;

②以CECF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,如圖4,過CCDABD

ACBC,AB4,

BD2,

由勾股定理得:CD 6,

EG2EC2 即(2t262+2t22 ,

t5

③以CEEF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,如圖5,CAAFBC,此時EA重合,

t2,

綜上,t的值為秒或5秒或2秒;

故答案為: 秒或5秒或2秒.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(4,0),B(0,3),C(4,3),IABC的內心,將ABC繞原點逆時針旋轉90°后,I的對應點I'的坐標為(  )

A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=∠2,∠3=∠4,∠5=∠6,試判斷ED與FB的位置關系,并說明為什么.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,DEAB,垂足為點E,連接CE.若AE2,∠DCE30°,則菱形的邊長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校要從小紅、小明和小亮三名同學中挑選一名同學參加數(shù)學素養(yǎng)大賽,在最近的四次專題測試中,他們三人的成績如下表所示:

學生

專題

集合證明

PISA問題

應用題

動點問題

小紅

70

75

80

85

小明

80

80

72

76

小亮

75

75

90

65

1)請算出小紅的平均分為多少?

2)該校根據(jù)四次專題考試成績的重要程度不同而賦予每個專題成績一個權重,權重比依次為x121,最后得出三人的成績(加權平均數(shù)),若從高分到低分排序為小亮、小明、小紅,求正整數(shù)x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,ACAB,且AC=AB,則點C的坐標為( 。

A. (2,1) B. (1,2) C. (1,3) D. (3,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,CD是∠ACB的角平分線,CEAB邊上的高,

1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).

2)若∠A=m∠B=n,求∠DCE.(用m、n表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點A2 019的坐標為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形的對角線相交于點,點為邊的中點.若菱形的周長為16,,則的面積是______

查看答案和解析>>

同步練習冊答案