【題目】如圖,直線(xiàn)y1=kx+2與反比例函數(shù)y2=(x<0)相交于點(diǎn)A,且當(dāng)x<﹣1時(shí),y1>y2,當(dāng)﹣1<x<0時(shí),y1<y2.
(1)求出y1的解析式;
(2)若直線(xiàn)y=2x+b與x軸交于點(diǎn)B(3,0),與y1交于點(diǎn)C,求出△AOC的面積.
【答案】(1)y1=﹣x+2;(2)S△AOC=.
【解析】
(1)根據(jù)當(dāng)x<﹣1時(shí),y1>y2,當(dāng)﹣1<x<0時(shí),y1<y2。可得A點(diǎn)的橫坐標(biāo),再將A點(diǎn)的橫坐標(biāo)代入反比例函數(shù),計(jì)算A點(diǎn)的縱坐標(biāo),因此可得A點(diǎn)的坐標(biāo),代入一次函數(shù),可得k的值,即可的一次函數(shù)的解析式.
(2)根據(jù)B點(diǎn)的坐標(biāo)計(jì)算b的值,在聯(lián)立方程組計(jì)算C點(diǎn)的坐標(biāo),再求出直線(xiàn)y1與x軸的交點(diǎn),進(jìn)而計(jì)算面積.
解:(1)∵當(dāng)x<﹣1時(shí),y1>y2,當(dāng)﹣1<x<0時(shí),y1<y2,
∴點(diǎn)A的橫坐標(biāo)為﹣1,
當(dāng)x=﹣1時(shí),y==3,則A(﹣1,3),
把A(﹣1,3)代入y=kx+2得﹣k+2=3,解得k=﹣1
∴y1的解析式為y1=﹣x+2;
(2)∵y=2x+b與x軸交于點(diǎn)B(3,0),
∴6+b=0,解得b=﹣6,
∴直線(xiàn)BC的解析式為y=2x﹣6,
解方程組 得 ,則點(diǎn)C的坐標(biāo)為(,),
直線(xiàn)y=﹣x+2與y軸的交點(diǎn)坐標(biāo)為(2,0),
∴S△AOC=×(3+)×2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某檢修小組乘一輛汽車(chē)沿東西方向方向檢修路,約定向東走為正,某天從地出發(fā)到收工時(shí)行走記錄(單位:):,求:
(1)收工時(shí)檢修小組在地的在哪一邊,距地多遠(yuǎn)?
(2)若汽車(chē)耗油升/每千米,開(kāi)工時(shí)儲(chǔ)存升汽油,用到收工時(shí)中途是否需要加油;
(3)若加油,最少加多少升才能保證收工后返回地?若不需要加油,到收工時(shí),還剩多少升汽油?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我區(qū)實(shí)施課堂教學(xué)改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,為了解學(xué)生自主學(xué)習(xí)、合作交流的具體情況,張老師對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類(lèi),A:特別好;B:好;C:一般;D:較差;繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查中,張老師一共調(diào)查了_____名同學(xué);
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,張老師從被調(diào)查的A類(lèi)和D類(lèi)學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,平行四邊形ABCD的周長(zhǎng)是26cm,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O, AC⊥AB,E是BC的中點(diǎn),△AOD的周長(zhǎng)比△AOB的周長(zhǎng)多3cm,則AE =_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB,CD相交于點(diǎn)O,OE,OF,OG分別是∠AOC,∠BOD,∠BOC的平分線(xiàn),以下說(shuō)法不正確的是( 。
A.∠DOF與∠COG互為余角
B.∠COG與∠AOG互為補(bǔ)角
C.射線(xiàn)OE,OF不一定在同一條直線(xiàn)上
D.射線(xiàn)OE,OG互相垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD為菱形,且點(diǎn)D(﹣4,0)在x軸上,點(diǎn)B和點(diǎn)C(0,3)在y軸上,反比例函數(shù)y=(k≠0)過(guò)點(diǎn)A,點(diǎn)E(﹣2,m)、點(diǎn)F分別是反比例函數(shù)圖象上的點(diǎn),其中點(diǎn)F在第一象限,連結(jié)OE、OF,以線(xiàn)段OE、OF為鄰邊作平行四邊形OEGF.
(1)寫(xiě)出反比例函數(shù)的解析式;
(2)當(dāng)點(diǎn)A、O、F在同一直線(xiàn)上時(shí),求出點(diǎn)G的坐標(biāo);
(3)四邊形OEGF周長(zhǎng)是否有最小值?若存在,求出這個(gè)最值,并確定此時(shí)點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游泳館普通票價(jià)20元/張,暑假為了促銷(xiāo),新推出兩種優(yōu)惠卡:
①金卡售價(jià)600元/張,每次憑卡不再收費(fèi).
②銀卡售價(jià)150元/張,每次憑卡另收10元.
暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時(shí),所需總費(fèi)用為y元.
(1)分別寫(xiě)出選擇銀卡、普通票消費(fèi)時(shí),y與x之間的函數(shù)關(guān)系式;
(2)在同一坐標(biāo)系中,若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示,請(qǐng)求出點(diǎn)A、B、C的坐標(biāo);
(3)請(qǐng)根據(jù)函數(shù)圖象,直接寫(xiě)出選擇哪種消費(fèi)方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y1=kx+b與y2=x+a的圖象如圖,則下列結(jié)論:①k<0;②a>0;③關(guān)于x的方程kx﹣x=a﹣b的解是x=3;④當(dāng)x<3時(shí),y1<y2中.則正確的序號(hào)有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,點(diǎn),分別在邊AC,BC上,,連接BD,點(diǎn)F,P,G分別為AB,BD,DE的中點(diǎn).
(1)如圖1中,線(xiàn)段PF與PG的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)若把△ CDE繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接AD,BE,GF,判斷△ FGP的形狀,并說(shuō)明理由;
(3)若把△ CDE繞點(diǎn)C在平面內(nèi)自由旋轉(zhuǎn),AC=8,CD=3,請(qǐng)求出△FGP面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com