【題目】如圖,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,點(diǎn)E在BC上,點(diǎn)F在AB上,將梯形ABCD沿直線EF翻折,使得點(diǎn)B與點(diǎn)D重合.如果,那么的值是( 。
A. B. C. D.
【答案】B
【解析】∵EF是點(diǎn)B、D的對稱軸,∴△BFE≌△DFE,∴DE=BE.
∵在△BDE中,DE=BE,∠DBE=45°,
∴∠BDE=∠DBE=45°,∴∠DEB=90°,∴DE⊥BC.
在等腰梯形ABCD中,∵=,
∴設(shè)AD=1,BC=4,過A作AG⊥BC于G,
∴四邊形AGED是矩形,∴GE=AD=1,
∵Rt△ABG≌Rt△DCE,∴BG=EC=1.5,
∴AG=DE=BE=2.5,∴AB=CD==,
∵∠ABC=∠C=∠FDE,∠CDE+∠C=90°,
∴∠FDE+∠CDE=90°,
∴∠FDB+∠BDC+∠FDB=∠FDB+∠DFE=90°,∴∠BDC=∠DFE,
∵∠DEF=∠DBC=45°,∴△BDC∽△DEF,
∴,∴DF=,∴BF=,
∴AF=AB﹣BF=,∴=.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級數(shù)學(xué)小組在課外活動中,研究了同一坐標(biāo)系中兩個(gè)反比例函數(shù)與()在第一象限圖像的性質(zhì),經(jīng)歷了如下探究過程:
操作猜想:(1)如圖1,當(dāng),時(shí),在y軸的正半軸上取一點(diǎn)A作x軸的平行線交于點(diǎn)B,交于點(diǎn)C.當(dāng)OA=1時(shí),= ;當(dāng)OA=3時(shí),= ;當(dāng)OA=a時(shí),猜想= .
數(shù)學(xué)思考:(2)在y軸的正半軸上任意取點(diǎn)A作x軸的平行線,交于點(diǎn)B、交于點(diǎn)C,請用含、的式子表示的值,并利用圖2加以證明.
推廣應(yīng)用:(3)如圖3,若,,在y軸的正半軸上分別取點(diǎn)A、D(OD>OA)作x軸的平行線,交于點(diǎn)B、E,交于點(diǎn)C、F,是否存在四邊形ADFB是正方形?如果存在,求OA的長和點(diǎn)B的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織全體學(xué)生參加“獻(xiàn)愛心”公益活動,為了了解九年級學(xué)生參加活動情況,從九年級學(xué)生著中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,統(tǒng)計(jì)了該天他們打掃街道,去敬老院服務(wù)和到社區(qū)文藝演出的人數(shù),并繪制了如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,其中到社區(qū)文藝演出的人數(shù)占所調(diào)查的九年級學(xué)生人數(shù)的,請根據(jù)兩幅統(tǒng)計(jì)圖中的信息,回答下列問題:
(1)本次調(diào)查共抽取了多少名九年級學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該中學(xué)九年級共有1500名學(xué)生,請你估計(jì)該中學(xué)九年級去敬老院的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知:DE∥BC,DF、BE分別平分∠ADE、∠ABC.
求證:∠FDE=∠DEB
證明:∵DE∥BC(已知)
∴∠ADE=∠ 、佟 ( ② )
∵DF、BE分別平分∠ADE、∠ABC,(已知)
∴∠ADF=∠ 、邸 ( ④ )
∠ABE=∠ ⑥ ( ⑤ )
∴∠ADF=∠ABE(等量代換)
∴DF∥ ( ⑦ )
∴∠FDE=∠DEB( ⑧ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AF平分∠BAE,CF平分∠DCE.
(1)如圖①,已知AB∥CD,求證:∠AEC=∠C-∠A;
(2)如圖②,在(1)的條件下,直接寫出∠E與∠F的關(guān)系.
∠E= (用含有∠F的式子表示)
(3)如圖③,BD⊥AB,垂足為B,∠BDC=110°,∠AEC=40°,求∠AFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:點(diǎn)D是線段BC的中點(diǎn);
(2)如圖2,若AB=AC=13,AF=BD=5,求四邊形AFBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)中學(xué)地理社團(tuán)學(xué)生在5名地理老師的帶領(lǐng)下去黃河風(fēng)景區(qū)進(jìn)行參觀考察,景區(qū)的門票為每人40元.現(xiàn)有兩種優(yōu)惠方案.甲方案:帶隊(duì)教師免費(fèi),學(xué)生按9折收費(fèi);乙方案:師生都8折收費(fèi).
(1)若有名學(xué)生,用代數(shù)式表示兩種優(yōu)惠方案各需多少元?
(2)當(dāng)為何值時(shí),兩種優(yōu)惠方案收費(fèi)相同?
(3)當(dāng)時(shí),采用哪種方案優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,AC=10,∠BAC和∠ACB的平分線相交于點(diǎn)E,過點(diǎn)E作EF∥BC交AC于點(diǎn)F,那么EF的長為( 。
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923086297137152/1923946164379648/STEM/8dc0999226e6439d82d3fa2c2424ef2e.png]
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高.點(diǎn)O是AC中點(diǎn),延長DO到E,使OE=OD,連接AE,CE.
(1)求證:四邊形ADCE的是矩形;
(2)若AB=17,BC=16,求四邊形ADCE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com