【題目】計算:
(1) (2-3)÷; (2) (-)2+2×;
(3) ; (4) (-2)×-4;
(5)(-1)(+1)-(-)-2+|1-|-(π-2)0+;
(6).
【答案】(1)﹣1;(2)5;(3)5;(4)-6;(5)3-7;(6)+.
【解析】
(1)去括號即可求出答案;(2)開平方之后計算即可得到答案;(3)將原式化簡之后計算即可求出答案;(4)去括號之后再計算從而求出答案;(5)根據(jù)平方差公式以及絕對值的性質(zhì)化簡原式,再計算從而求出答案;(6)化簡原式再計算從而求出答案.
(1)原式=2÷-3÷=8-9=-1;(2)原式=2-2+3+2=5;(3)原式=2+4-=5;(4)原式=×-2×-4×=3-6-2=-6;(5)原式=()2-12-+-1-1+2=5-1-9+3-2=3-7;(6)原式=(2-)-2(--3)=(2-)-2()=+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是AC邊上的一個動點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)判斷OE與OF的大小關(guān)系?并說明理由?
(2)當(dāng)點(diǎn)O在邊AC上運(yùn)動時,四邊形BCFE會是菱形嗎?若是,請證明;若不是,則說明理由;
(3)當(dāng)點(diǎn)O運(yùn)動到何處時,四邊形AECF是矩形?并說出你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近兩年,國際市場黃金價格漲幅較大,中國交通銀行推出“沃德金”的理財產(chǎn)品,即以黃金為投資產(chǎn)品,投資者從黃金價格的上漲中賺取利潤.上周五黃金的收盤價為285元/克,下表是本周星期一至星期五黃金價格的變化情況.(注:星期一至星期五開市,星期六.星期日休市)
星期 | 一 | 二 | 三 | 四 | 五 |
收盤價的變化(與前一天收盤價比較) | +7 | +5 | +8 |
問:(1)本周星期三黃金的收盤價是多少?
(2)本周黃金收盤時的最高價.最低價分別是多少?
(3)上周,小王以周五的收盤價285元/克買入黃金1000克,已知買入與賣出時均需支付成交金額的千分之五的交易費(fèi),賣出黃金時需支付成交金額的千分之三的印花稅.本周,小王以周五的收盤價全部賣出黃金1000克,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索規(guī)律,觀察下面算式,解答問題.
1+3 =4 =22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+7+9=25=52;
(1)請猜想1+3+5+7+9+…+19=
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=
(3)試計算:101 +103+…+197 +199.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是個單位長度;△AOC與△BOD關(guān)于直線對稱,則對稱軸是;△AOC繞原點(diǎn)O順時針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是度;
(2)連結(jié)AD,交OC于點(diǎn)E,求∠AEO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以1個單位長度的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒2個單位長度的速度運(yùn)動,過點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= , PD= .
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運(yùn)動),使四邊形PDBQ在某一時刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個運(yùn)動過程中,求出線段PQ中點(diǎn)M所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是菱形,點(diǎn)E、F分別是菱形ABCD邊AD、CD的中點(diǎn).
(1)求證:BE=BF;
(2)當(dāng)△BEF為等邊三角形時,求的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com