如圖,PA、PB是⊙O的切線,CD切⊙O于點E,△PCD的周長為12,∠APB=60°.求:
(1)PA的長;
(2)∠COD的度數(shù).

【答案】分析:(1)可通過切線長定理將相等的線段進行轉換,得出三角形PDE的周長等于PA+PB的結論,即可求出PA的長;
(2)根據(jù)三角形的內角和求出∠ADC和∠BEC的度數(shù)和,然后根據(jù)切線長定理,得出∠EDO和∠DEO的度數(shù)和,再根據(jù)三角形的內角和求出∠DOE的度數(shù).
解答:解:(1)∵CA,CE都是圓O的切線,
∴CA=CE,
同理DE=DB,PA=PB,
∴三角形PDE的周長=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,
即PA的長為6;

(2)∵∠P=60°,
∴∠PCE+∠PDE=120°,
∴∠ACD+∠CDB=360°-120°=240°,
∵CA,CE是圓O的切線,
∴∠OCE=∠OCA=∠ACD;
同理:∠ODE=∠CDB,
∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,
∴∠COD=180-120°=60°.
點評:本題考查的是切線長定理,切線長定理圖提供了很多等線段,分析圖形時關鍵是要仔細探索,找出圖形的各對相等切線長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,PA,PB是⊙O的切線,切點分別為A,B,且∠APB=50°,點C是優(yōu)弧
AB
上的一點,則∠ACB的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,PA、PB是⊙O的切線,A、B為切點,∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,PA、PB是⊙O的兩條切線,A、B是切點,連接AB,直線PO交AB于M.請你根據(jù)圓的對稱性,寫出△PAB的三個正確的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠BAC=25°,則∠P=
50
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•谷城縣模擬)如圖,PA、PB是⊙O 的切線,切點分別是A、B,點C是⊙O上異與點A、B的點,如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步練習冊答案