已知AC⊥BC于C,BC=a,CA=b,AB=c,下列選項(xiàng)中⊙O的半徑為的是

 

【答案】

C

【解析】A、設(shè)圓的半徑是x,圓切AC于E,切BC于D,且AB于F,如圖(1)同樣得到正方形OECD,AE=AF,BD=BF,則a-x+b-x=c,求出x=,故本選項(xiàng)錯(cuò)誤;

B、設(shè)圓切AB于F,圓的半徑是y,連接OF,如圖(2),則△BCA∽△OFA,∴, ∴,解得:y=,故本選項(xiàng)錯(cuò)誤;

C、連接OE、OD,∵AC、BC分別切圓O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,

∴四邊形OECD是正方形,∴OE=EC=CD=OD,設(shè)圓O的半徑是r,∵OE∥BC,∴∠AOE=∠B,

∵∠AEO=∠ODB,∴△ODB∽△AEO,∴,,解得:r=,故本選項(xiàng)正確;

D、O點(diǎn)連接三個(gè)切點(diǎn),從上至下一次為:OD,OE,OF;并設(shè)圓的半徑為x;容易知道BD=BF,所以AD=BD-BA=BF-BA=a+x-c;又∵b-x=AE=AD=a+x-c;所以x=,故本選項(xiàng)錯(cuò)誤.故選C.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知AC⊥BC于C,BC=a,CA=b,AB=c,下列選項(xiàng)中⊙O的半徑為
ab
a+b
的是( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知AC⊥BC于C,BC=a,CA=b,AB=c,下列圖形中⊙O與△ABC的某兩條邊或三邊所在的直線相切,則⊙O的半徑為
ab
a+b
的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省臺(tái)州市臨海市杜橋?qū)嶒?yàn)中學(xué)九年級(jí)(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知AC⊥BC于C,BC=a,CA=b,AB=c,下列選項(xiàng)中⊙O的半徑為的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年湖北省武漢市新觀察九年級(jí)元月調(diào)考數(shù)學(xué)復(fù)習(xí)交流卷(一)(解析版) 題型:選擇題

已知AC⊥BC于C,BC=a,CA=b,AB=c,下列圖形中⊙O與△ABC的某兩條邊或三邊所在的直線相切,則⊙O的半徑為的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案