如圖,等腰△ABC的底邊長為8cm,腰長為5cm,一動點P在底邊上從B向C以0.25cm/s的速度移動,請你探究:當(dāng)P運動幾秒時,P點與頂點A的連線PA與腰垂直。

 

【答案】

7s或25s

【解析】

試題分析:作底邊上的高AD,設(shè)BP=xcm,根據(jù)等腰三角形三線合一的性質(zhì)可得AD=3,在Rt△APD中,根據(jù)勾股定理可得AP2=PD2+AD2=(4-x)2+32,在Rt△APC中,根據(jù)勾股定理可得AP2+AC2=PC2,即可得到關(guān)于x的方程,求得x的值,從而可得BP的長,求得P點移動的時間,再得到得P的對稱點P′,即可求得BP′的長,從而求得P點移動的時間.

作底邊上的高AD

設(shè)BP=xcm            

易得AD=3

在Rt△APD中

AP2=PD2+AD2=(4-x)2+32

在Rt△APC中 ,

AP2+AC2=PC2

∴(4-x)2+32+52=(8-x)2

得x=

∴BP=

∴P點移動時間為÷0.25=7(s)

易得P的對稱點P′,即BP′=8-=

÷0.25=25(s)

∴當(dāng)P點運動7s或25s時,PA與腰垂直。

考點:動點的綜合題

點評:此題綜合性較強,難度較大,注意掌握輔助線的作法是解此題的關(guān)鍵,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,等腰△ABC的腰長為2
2
,底邊BC=4,以BC所在的直線為x軸,BC的垂直平分線為y軸建立如圖所示的直角坐標系,則B
 
、C
 
、A
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,等腰△ABC的底邊BC為16,底邊上的高AD為6,則腰長AB的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,等腰△ABC的腰長是5cm,底邊長是6cm,P是底邊BC上任意一點,PD⊥AB,PE⊥AC,垂足分別是D,E,那么PD+PE=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰△ABC的周長為27,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰△ABC的頂角為120°,腰長為10,則底邊BC上的中線AD長為
5
5

查看答案和解析>>

同步練習(xí)冊答案