【題目】如圖已知Rt△ABC,ABC=90°經(jīng)過點A的直線lBC交于點F

1)請作出ABC關(guān)于直線l軸對稱的ADEA、BC的對應(yīng)點分別是A、DE

2)連接CD,EB在不添加其它輔助線的情況下,請你找出圖中的一對全等三角形 ;

3)證明(2)中的結(jié)論

【答案】(1)答案見解析;(2)ABC,ADE;(3)證明見解析.

【解析】試題分析:(1)根據(jù)軸對稱的性質(zhì)畫出△ADE即可;

(2)、(3)根據(jù)全等三角形的判定定理得出結(jié)論.

試題解析:(1)如圖所示:

(2)∵△ABC與△ADE關(guān)于直線l對稱,

∴△ABC≌△ADE.

故答案為:△ABC,ADE;

(3)∵△ABC與△ADE關(guān)于直線l對稱,

,

∴△ABC≌△ADE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab,則a+c____b+c;,若mxmy,且xy成立,則m___0;若5m-7b5n-7b,則m__n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果M個不同的正整數(shù),對其中的任意兩個數(shù),這兩個數(shù)的積能被這兩個數(shù)的和整除,則稱這組數(shù)為M個數(shù)的祖沖之數(shù)組.如(3,6)為兩個數(shù)的祖沖之數(shù)組,因為3×6能被(3+6整除);又如(15,30,60)為三個數(shù)的祖沖之數(shù)組,因為(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…
(1)我們發(fā)現(xiàn),3和6,4和12,5和20,6和30…,都是兩個數(shù)的祖沖之數(shù)組;由此猜測n和n(n﹣1)(n≥2,n為整數(shù))組成的數(shù)組是兩個數(shù)的祖沖之數(shù)組,請證明這一猜想.
(2)若(4a,5a,6a)是三個數(shù)的祖沖之數(shù)組,求滿足條件的所有三位正整數(shù)a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點.

1)求一次函數(shù)、反比例函數(shù)的關(guān)系式;

2)求AOB的面積.

3)當自變量x滿足什么條件時,y1>y2 .(直接寫出答案)

4)將反比例函數(shù)的圖象向右平移nn0個單位,得到的新圖象經(jīng)過點(3,-4),求對應(yīng)的函數(shù)關(guān)系式y3.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把拋物線y=-2x2先向上平移1個單位,再向右平移2個單位,所得到的拋物線的解析式是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張長為7cm,寬為5cm的矩形紙片上,現(xiàn)要剪下一個腰長為4cm的等腰三角形,要求等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上,則剪下的等腰三角形一腰上的高不可能是(
A.4
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P是直線l外一點,A為垂足,且PA=4 cm,則點P到直線l的距離(  )

A. 小于4 cm B. 等于4 cm C. 大于4 cm D. 不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是“趙爽弦圖”,其中△ABH、△BCG、△CDF和△DAE是四個全等的直角三角形,四邊形ABC的和EFGH都是正方形.根據(jù)這個圖形的面積關(guān)系,可以證明勾股定理.設(shè)AD=c,AE=b,c=10,a﹣b=2.
(1)正方形EFGH的面積為 , 四個直角三角的面積和為
(2)求(a+b)2的值.
(3)a+b= , a= , b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)在平面直角坐標系中,△ABC三個頂點的坐標分別是A﹣22)、B20),C﹣4,﹣2).

1)在平面直角坐標系中畫出△ABC;

2)若將(1)中的△ABC平移,使點B的對應(yīng)點B′坐標為(6,2),畫出平移后的△A′B′C′;

3)求△A′B′C′的面積.

查看答案和解析>>

同步練習(xí)冊答案