已知:如圖,△OBC內(nèi)接于圓,圓與直角坐標(biāo)系的x、y軸交于B、A兩點(diǎn),若∠BOC=45°精英家教網(wǎng),∠OBC=75°,A點(diǎn)坐標(biāo)為(0,2).
求:(1)B點(diǎn)的坐標(biāo);
(2)BC的長(zhǎng).
分析:(1)構(gòu)造以AB為斜邊的直角三角形,利用三角形的內(nèi)角和定理可得∠C的度數(shù),利用同弧所對(duì)的圓周角相等可得∠OAB的度數(shù),進(jìn)而利用∠OAB的正切值可求得OB長(zhǎng),也就求得了點(diǎn)B的坐標(biāo);
(2)作出以BC為斜邊的直角三角形,利用45°的余弦值可求得BE長(zhǎng),進(jìn)而利用60°的正弦值可求得BC長(zhǎng).
解答:精英家教網(wǎng)解:(1)連接AB(1分)
∵∠BOC=45°,∠OBC=75°,
∴∠OAB=∠OCB=60°.(2分)
∵A點(diǎn)坐標(biāo)為(0,2),
∴AO=2.
在Rt△AOB中,tanBAO=
OB
AO
,
OB=AO•tan60°=2
3
,
∴B點(diǎn)的坐標(biāo)為(2
3
,0)
;(3分)

(2)作BE⊥OC于E(4分).
∵∠BOE=45°,
∴OE=BE.
在Rt△BEO中,OE2+BE2=OB2,BE=
6
,(5分)
在Rt△BEC中,sin∠C=
BE
BC

BC=
BE
sin∠C
=
6
3
2
=2
2
(6分).
點(diǎn)評(píng):考查銳角三角函數(shù)的運(yùn)用;注意構(gòu)造所求邊所在的有特殊角的直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄂州)已知,如圖,△OBC中是直角三角形,OB與x軸正半軸重合,∠OBC=90°,且OB=1,BC=
3
,將△OBC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°再將其各邊擴(kuò)大為原來(lái)的m倍,使OB1=OC,得到△OB1C1,將△OB1C1繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°再將其各邊擴(kuò)大為原來(lái)的m倍,使OB2=OC1,得到△OB2C2,…,如此繼續(xù)下去,得到△OB2012C2012,則m=
2
2
.點(diǎn)C2012的坐標(biāo)是
(-22013,0)
(-22013,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2012學(xué)年北京四中九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,△OBC內(nèi)接于圓,圓與直角坐標(biāo)系的x、y軸交于B、A兩點(diǎn),若∠BOC=45°,∠OBC=75°,A點(diǎn)坐標(biāo)為(0,2).
求:(1)B點(diǎn)的坐標(biāo);
(2)BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年北京市通州區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,△OBC內(nèi)接于圓,圓與直角坐標(biāo)系的x、y軸交于B、A兩點(diǎn),若∠BOC=45°,∠OBC=75°,A點(diǎn)坐標(biāo)為(0,2).
求:(1)B點(diǎn)的坐標(biāo);
(2)BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年湖北省鄂州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

已知,如圖,△OBC中是直角三角形,OB與x軸正半軸重合,∠OBC=90°,且OB=1,BC=,將△OBC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°再將其各邊擴(kuò)大為原來(lái)的m倍,使OB1=OC,得到△OB1C1,將△OB1C1繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°再將其各邊擴(kuò)大為原來(lái)的m倍,使OB2=OC1,得到△OB2C2,…,如此繼續(xù)下去,得到△OB2012C2012,則m=    .點(diǎn)C2012的坐標(biāo)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案