【題目】(本題12分)如圖,已知點D在△ABC的BC邊上,DE∥AC交AB于E,DF//AB交AC于F
(1)求證:AE=DF.
(2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說明理由.
【答案】(1)詳見解析;(2)平行四邊形AEDF為菱形;理由詳見解析
【解析】
試題(1)利用AAS推出△ADE≌△DAF,再根據(jù)全等三角形的對應邊相等得出AE=DF;
(2)先根據(jù)已知中的兩組平行線,可證四邊形DEFA是,再利用AD是角平分線,結(jié)合AE∥DF,易證∠DAF=∠FDA,利用等角對等邊,可得AE=DF,從而可證AEDF實菱形.
試題解析:(1)∵DE∥AC,∠ADE=∠DAF,
同理∠DAE=∠FDA,
∵AD=DA,
∴△ADE≌△DAF,
∴AE=DF;
(2)若AD平分∠BAC,四邊形AEDF是菱形,
∵DE∥AC,DF∥AB,
∴四邊形AEDF是平行四邊形,
∴∠DAF=∠FDA.
∴AF=DF.
∴平行四邊形AEDF為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了做好大課間活動,計劃用400元購買10件體育用品,備選體育用品及單價如下表(單位:元)
備選體育用品 | 籃球 | 排球 | 羽毛球拍 |
單價(元) | 50 | 40 | 25 |
(1)若400元全部用來購買籃球和羽毛球拍共10件,問籃球和羽毛球拍各購買多少件?
(2)若400元全部用來購買籃球、排球和羽毛球拍三種共10件,能實現(xiàn)嗎?(若能實現(xiàn)直接寫出一種答案即可,若不能請說明理由.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知△ABC的三個頂點的坐標分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)請直接寫出點B關于點A對稱的點的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應點的坐標;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店在甲批發(fā)市場以每包m元的價格進了40包茶葉,又在乙批發(fā)市場以每包n元(m>n)的價格進了同樣的60包茶葉,如果商家以每包元的價格賣出這種茶葉,賣完后,這家商店( )
A.盈利了 B.虧損了 C.不贏不虧 D.盈虧不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x= 的拋物線經(jīng)過點A(6,0)和B(0,﹣4).
(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第一象限,四邊形OEAF是以OA為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關系式;
(3)當(2)中的平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃購買一批課外讀物,為了了解學生對課外讀物的需求情況,學校進行了一次“我最喜愛的課外讀物”的調(diào)查,設置了“文學”、“科普”、“藝術”和“其他”四個類別,規(guī)定每人必須并且只能選擇其中一類,現(xiàn)從全體學生的調(diào)查表中隨機抽取了部分學生的調(diào)查表進行統(tǒng)計,并把統(tǒng)計結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計圖,則在扇形統(tǒng)計圖中,藝術類讀物所在扇形的圓心角是度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A、B的坐標分別為(8,0)、(0,2 ),C是AB的中點,過點C作y軸的垂線,垂足為D,動點P從點D出發(fā),沿DC向點C勻速運動,過點P作x軸的垂線,垂足為E,連接BP、EC.當BP所在直線與EC所在直線第一次垂直時,點P的坐標為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,則在下列條件:①∠C=∠D ②AC=AD ③∠CBA=∠DBA ④BC=BD中任選一個能判定△ABC≌△ABD的是( )
A. ①②③④ B. ②③④ C. ①③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列判斷正確的是( )
A. 有2對同位角,2對內(nèi)錯角,2對同旁內(nèi)角
B. 有2對同位角,2對內(nèi)錯角,3對同旁內(nèi)角
C. 有4對同位角,2對內(nèi)錯角,4對同旁內(nèi)角
D. 以上判斷均不正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com