【題目】如圖,AB為⊙O的直徑,CB,CD分別切⊙O于點B,D,CD交BA的延長線于點E,CO的延長線交⊙O于點G,EF⊥OG于點F。
(1)求證:∠FEB=∠ECF
(2)BC= 12, DE=8 求 EA的長。
【答案】(1)詳見解析;(2)4.
【解析】
(1)利用切線長定理得到OC平分∠BCE,即∠ECF=∠BCO,利用切線的性質(zhì)得OB⊥BC,則∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;
(2)連接OD,如圖,利用切線長定理和切線的性質(zhì)得到CD=CB=12,OD⊥CE,則CE=20,利用勾股定理可計算出BE=16,設(shè)⊙O的半徑為r,則OD=OB=r,OE=16﹣r.在Rt△ODE中,根據(jù)勾股定理得r2+82=(16﹣r)2,解得r=6,即可得出EA的長.
(1)∵CB、CD分別切⊙O于點B,D,∴OBBC,OC平分∠BCE,即∠ECF=∠BCO.
∵∠OBC=90°,∴∠BCO+∠COB=90°.
∵EFOG,∴∠FEB+∠FOE=90°.
又∵∠COB=∠FOE,∴∠FEB=∠BCO=∠ECF.
(2) 連接OD.
∵CB、CD分別切⊙O于點B,D,∴ CD=CB=12,ODCE,∴CE=CD+DE=12+8=20.
在Rt△BCE中,
設(shè)⊙O的半徑為r,則OD=OB=r,OE=16-r.
在Rt△ODE中,,解得:r=6.
∴EA=EB一2r=16 一12= 4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC 的三個頂點的坐標分別 A(-3,4)B(-5,2)C(-2,1)
(1)畫出 △ABC關(guān)于y 軸的對稱圖形 △A1B1C1;
(2)畫出將△ABC 繞原點 O逆時針方向旋轉(zhuǎn)90°得到的△A2B2C2 ;
(3)求(2)中線段 OA掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,二次函數(shù)的圖像交軸正半軸于點,頂點為,一次函數(shù)的圖像交軸于點,交軸于點,的正切值為.
(1)求二次函數(shù)的解析式與頂點坐標;
(2)將二次函數(shù)圖像向下平移個單位,設(shè)平移后拋物線頂點為,若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點D落在AB邊的中點E處,折痕為FH,點C落在Q處,EQ與BC交于點G,則△EBG的周長是 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線與反比例函數(shù)(>0)的圖象分別交于點 A(,4)和點B(8,),與坐標軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)觀察圖象,當時,直接寫出的解集;
(3)若點P是軸上一動點,當△COD與△ADP相似時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D、E分別是⊙O兩條半徑OA、OB的中點, .
(1)求證:CD=CE.
(2)若∠AOB=120°,OA=x,四邊形ODCE的面積為y,求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+3與x軸交于A、B兩點,與y軸交于點C,點D為拋物線的頂點,點P為第一象限拋物線上一點,且∠DAP=45°,則點P的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點C,從觀測點C測得一小車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.
(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論:
①b2>4ac;②ac>0; ③當x>1時,y隨x的增大而減。 ④3a+c>0;⑤任意實數(shù)m,a+b≥am2+bm.
其中結(jié)論正確的序號是( 。
A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com