【題目】數(shù)學(xué)老師在課堂上展示一矩形紙片,如圖,在矩形ABCD中,AB=6cm,BC=8cm.他要將此矩形做一個(gè)梯形教具,現(xiàn)進(jìn)行如下操作:
先將矩形ABCD的點(diǎn)D折疊到對(duì)角線(xiàn)AC上的點(diǎn)F處,折痕為CE,再將折疊的部分裁掉;
問(wèn):(1)所裁部分DE的長(zhǎng);
(2)所裁成的梯形ABCE的面積是多少?
【答案】(1)3cm;(2)39cm2;
【解析】
(1)由四邊形ABCD是矩形,即可得∠D=∠B=90°,CD=AB=6cm,AD=BC=8cm,由勾股定理,即可得AC的長(zhǎng),設(shè)DE=xcm,又由折疊的性質(zhì)即可求得AE,EF,AF的長(zhǎng),根據(jù)勾股定理即可得方程:(8-x)2=16+x2,解此方程即可求得答案;
(2)由梯形的面積公式,即可求得裁成的梯形ABCE的面積.
(1)∵四邊形ABCD是矩形,
∴∠D=∠B=90,CD=AB=6cm,AD=BC=8cm,
在Rt△ABC中,AC==10(cm),
設(shè)DE=xcm,
根據(jù)折疊的性質(zhì)可得:EF=DE=xcm,CF=CD=6cm,∠EFC=∠D=90,
∴∠AFE=90,AE=ADDE=8x(cm),AF=ACCF=106=4(cm),
在Rt△AEF中,AE2=AF2+EF2,
即(8x)2=16+x2,
解得:x=3,
∴DE=3cm;
(2)∵AE=ADDE=83=(5cm)
∴S梯形ABCE=12(AE+BC)AB=12×(5+8)×6=39(cm2)
∴所裁成的梯形ABCE的面積是39cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校準(zhǔn)備購(gòu)進(jìn)一批籃球和排球,買(mǎi)2個(gè)籃球和3個(gè)排球共需230元,買(mǎi)3個(gè)籃球和2個(gè)排球共需290元。
(1)求一個(gè)籃球和一個(gè)排球的售價(jià)各是多少元?
(2 )學(xué)校欲購(gòu)進(jìn)籃球和排球共120個(gè),且排球的數(shù)量不多于籃球的數(shù)量的2倍少10,求出最多購(gòu)買(mǎi)排球多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車(chē)在城街路上行駛速度不得超過(guò)70千米小時(shí),如圖,一輛小汽車(chē)在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面對(duì)車(chē)速檢測(cè)儀A的正前方60米處的C點(diǎn),過(guò)了5秒后,測(cè)得小汽車(chē)所在的B點(diǎn)與車(chē)速檢測(cè)儀A之間的距離為100米.
求BC間的距離;這輛小汽車(chē)超速了嗎?請(qǐng)說(shuō)明理由.
【答案】這輛小汽車(chē)沒(méi)有超速.
【解析】
(1)根據(jù)勾股定理求出BC的長(zhǎng);
(2)直接求出小汽車(chē)的時(shí)速,進(jìn)行比較得出答案.
(1)在Rt△ABC中,AC=60 m,
AB=100 m,且AB為斜邊,根據(jù)勾股定理,得BC=80 m.
(2)這輛小汽車(chē)沒(méi)有超速.
理由:∵80÷5=16(m/s),
而16 m/s=57.6 km/h,57.6<70,
∴這輛小汽車(chē)沒(méi)有超速.
【點(diǎn)睛】
考查勾股定理的應(yīng)用,熟練掌握勾股定理是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
19
【題目】已知:如圖,線(xiàn)段AC和BD相交于點(diǎn)G,連接AB,CD,E是CD上一點(diǎn),F是DG上一點(diǎn),,且.
求證:;若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(-3,0),對(duì)稱(chēng)軸為直線(xiàn)x=-1,給出四個(gè)結(jié)論:①b2>4ac;②2a+b=0;③a+b+c>0;④若點(diǎn)B(-,y1),C(-,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2.其中正確結(jié)論是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理是人類(lèi)最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書(shū)《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積
B.最大正方形的面積
C.較小兩個(gè)正方形重疊部分的面積
D.最大正方形與直角三角形的面積和
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=8,點(diǎn)E、F分別在AD和AB上,AE=3,AF=4.
(1)點(diǎn)P在邊BC上運(yùn)動(dòng)、四邊形EFPH是平行四邊形,連接DH.
①當(dāng)四邊形FPHE是菱形時(shí),線(xiàn)段BP=_____;
②當(dāng)點(diǎn)P在邊BC上運(yùn)動(dòng)時(shí),△DEH的面積會(huì)不會(huì)變化?若變化,求其最大值;若不變,求出它的值;
③當(dāng)△DEH是等腰三角形時(shí),求BP的長(zhǎng);
(2)若點(diǎn)E沿E-D-C向終點(diǎn)C運(yùn)動(dòng),點(diǎn)F沿F-B-C終點(diǎn)C運(yùn)動(dòng),速度分別為每秒3個(gè)單位長(zhǎng)度和每秒4個(gè)單位長(zhǎng)度,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)C時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),求EF的中點(diǎn)O的運(yùn)動(dòng)路徑長(zhǎng)(要求寫(xiě)出簡(jiǎn)略的計(jì)算過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本.
(1)求出每天的銷(xiāo)售利潤(rùn)y(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)如果該企業(yè)要使每天的銷(xiāo)售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷(xiāo)售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷(xiāo)售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一批貨物要運(yùn)往某地,貨主準(zhǔn)備租用汽車(chē)運(yùn)輸公司的甲、乙兩種貨車(chē),已知過(guò)去兩次租用這兩種貨車(chē)的運(yùn)貨情況如下表:
第一次 | 第二次 | |
甲種貨車(chē)的輛數(shù) | 2輛 | 5輛 |
乙種貨車(chē)的輛數(shù) | 3輛 | 6輛 |
累計(jì)運(yùn)貨重量 | 14噸 | 32噸 |
(1)分別求甲乙兩種貨車(chē)每輛載重多少?lài)?
(2)現(xiàn)租用該公司3輛甲種貨車(chē)和5輛乙種貨車(chē)剛好一次運(yùn)完這批貨物,如果按每噸付運(yùn)費(fèi)120元計(jì)算,貨主應(yīng)付運(yùn)費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初二年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專(zhuān)注聽(tīng)講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:
(1)在這次評(píng)價(jià)中,一共抽查了 名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“獨(dú)立思考”所在的扇形的圓心角的度數(shù)為 度;
(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)如果全市有6000名初二學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初二學(xué)生約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com