已知拋物線y=ax2+(+3a)x+4與x軸交于A、B兩點,與y軸交于點C.是否存在實數(shù)a,使得△ABC為直角三角形?若存在,請求出a的值;若不存在,請說明理由.
【答案】分析:可根據(jù)拋物線的解析式表示出A、B、C的坐標(biāo),然后分別表示出AB、AC、BC的長,可根據(jù)∠BAC=90°,∠BCA=90°,∠ABC=90°三種不同情況用勾股定理求出a的值.
解答:解:依題意,得點C的坐標(biāo)為(0,4),
設(shè)點A、B的坐標(biāo)分別為(x1,0),(x2,0),
由ax2+(+3a)x+4=0,
解得x1=-3,x2=-,
∴點A、B的坐標(biāo)分別為(-3,0),(,0),
∴AB=|-+3|,AC==5,BC==,
∴AB2=|-+3|2=-+9,
AC2=25,BC2=+16.
(ⅰ)當(dāng)AB2=AC2+BC2時,∠ACB=90°,
由AB2=AC2+BC2
-+9=25++16,
解得a=-,
∴當(dāng)a=-時,點B的坐標(biāo)為(,0),
AB2=,AC2=25,BC2=
于是AB2=AC2+BC2,
∴當(dāng)a=-時,△ABC為直角三角形.
(ⅱ)當(dāng)AC2=AB2+BC2時,∠ABC=90°,
由AC2=AB2+BC2
得25=-+9++16,
解得a=
當(dāng)a=時,-=-=-3,點B(-3,0)與點A重合,不合題意.
<ⅲ>當(dāng)BC2=AC2+AB2時,∠BAC=90°,
由BC2=AC2+AB2
得25+-+9=+16,
解得a=,
不合題意.
綜合<。尽ⅲ饥ⅲ、<ⅲ>,當(dāng)a=-時,△ABC為直角三角形.
點評:本題考查了二次函數(shù)的應(yīng)用、直角三角形的判定和勾股定理等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標(biāo)和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標(biāo)為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標(biāo)原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當(dāng)x≥1時y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案