【題目】有一塊形狀如圖的五邊形余料,,,,,.要在這塊余料中截取一塊矩形材料,其中一邊在上,并使所截矩形的面積盡可能大.

1)若所截矩形材料的一條邊是,求矩形材料的面積;

2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請說明理由.

【答案】1S=30;(2)能,的最大值為30.25.

【解析】

1)①若所截矩形材料的一條邊是BC,過點CCFAEF,得出S1=ABBC=6×5=30

②若所截矩形材料的一條邊是AE,過點EEFABCDF,FGABG,過點CCHFGH,則四邊形AEFG為矩形,四邊形BCHG為矩形,證出CHF為等腰三角形,得出AE=FG=6HG=BC=5,BG=CH=FH,求出BG=CH=FH=FG-HG=1,AG=AB-BG=5,得出S2=AEAG=6×5=30;

2)在CD上取點F,過點FFMABM,FNAEN,過點CCGFMG,則四邊形ANFM為矩形,四邊形BCGM為矩形,證出CGF為等腰三角形,得出MG=BC=5,BM=CGFG=DG,設(shè)AM=x,則BM=6-x,FM=GM+FG=GM+CG=BC+BM=11-x,得出S=AM×FM=x11-x=-x2+11x,由二次函數(shù)的性質(zhì)即可得出結(jié)果.

1)①若所截矩形材料的一條邊是BC,如圖1所示:

過點CCFAEF,S1=ABBC=6×5=30

②若所截矩形材料的一條邊是AE,如圖2所示:

過點EEFABCDF,FGABG,過點CCHFGH,

則四邊形AEFG為矩形,四邊形BCHG為矩形,

∵∠C=135°

∴∠FCH=45°,

∴△CHF為等腰直角三角形,

AE=FG=6HG=BC=5,BG=CH=FH,

BG=CH=FH=FG-HG=6-5=1,

AG=AB-BG=6-1=5,

S2=AEAG=6×5=30;

2)能;理由如下:

CD上取點F,過點FFMABM,FNAEN,過點CCGFMG

則四邊形ANFM為矩形,四邊形BCGM為矩形,

∵∠C=135°,

∴∠FCG=45°,

∴△CGF為等腰直角三角形,

MG=BC=5,BM=CGFG=DG,

設(shè)AM=x,則BM=6-x,

FM=GM+FG=GM+CG=BC+BM=11-x,

S=AM×FM=x11-x=-x2+11x=-x-5.52+30.25,

∴當(dāng)x=5.5時,S的最大值為30.25

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,某景區(qū)商店推出銷售紀(jì)念品活動,已知紀(jì)念品每件的進(jìn)貨價為30元,經(jīng)市場調(diào)研發(fā)現(xiàn),當(dāng)該紀(jì)念品的銷售單價為40元時,每天可銷售280件;當(dāng)銷售單價每增加1元,每天的銷售數(shù)量將減少10件.(銷售利潤=銷售總額﹣進(jìn)貨成本)

1)若該紀(jì)念品的銷售單價為45元時,則當(dāng)天銷售量為   件.

2)當(dāng)該紀(jì)念品的銷售單價為多少元時,該紀(jì)念品的當(dāng)天銷售銷售利潤是2610元.

3)當(dāng)該紀(jì)念品的銷售單價定為多少元時,該紀(jì)念品的當(dāng)天銷售銷售利潤達(dá)到最大值?求此最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點,交y 軸于點C

1)求拋物線的頂點坐標(biāo).

2)點為拋物線上一點,是否存在點使,若存在請直接給出點坐標(biāo);若不存在請說明理由.

3)將直線繞點順時針旋轉(zhuǎn),與拋物線交于另一點,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB、CD⊙O上的四個點,ABBC,BDAC于點E,連接CD、AD

1)求證:DB平分∠ADC;

2)若BE3,ED6,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,AB4,AC3,點D,E分別是AB,AC的中點,點G,FBC邊上(均不與端點重合),DGEF.將△BDG繞點D順時針旋轉(zhuǎn)180°,將△CEF繞點E逆時針旋轉(zhuǎn)180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形中,,繞點順時針旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于點

當(dāng)繞點旋轉(zhuǎn)到時(如圖1),易證

1)當(dāng)繞點旋轉(zhuǎn)到時(如圖2),線段之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.

2)當(dāng)繞點旋轉(zhuǎn)到如圖3的位置時,線段之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過點A(3,0)和點B(4,3).

(1)求這條拋物線所對應(yīng)的二次函數(shù)的表達(dá)式.

(2)直接寫出該拋物線開口方向和頂點坐標(biāo).

(3)直接在所給坐標(biāo)平面內(nèi)畫出這條拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABACBC4,tanB2,以AB的中點D為圓心,r為半徑作⊙D,如果點B在⊙D內(nèi),點C在⊙D外,那么r可以。ā 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們不妨約定:對角線互相垂直的凸四邊形叫做十字形”.

(1)在平行四邊形、矩形、菱形、正方形中,一定是十字形的有   

(2)如圖1,在四邊形ABCD中,ABAD,且CBCD

①證明:四邊形ABCD十字形”;

②若AB=2.BAD=60°,BCD=90°,求四邊形ABCD的面積.

(3)如圖2.AB、CD是半徑為1的⊙O上按逆時針方向排列的四個動點,ACBD交于點E,若∠ADBCDBABDCBD.滿足AC+BD=3,求線段OE的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案