【題目】用適當(dāng)?shù)姆柋硎鞠铝嘘P(guān)系:
(l)a的2倍比a與3的和; (2)y的一半與5的差是非負數(shù);
(3)x的3倍與1的和小于x的2倍與5的差.
【答案】(1)2a<a+3;(2)y-5≥0;(3)3x+1< 2x-5
【解析】試題分析:(1)首先表示出a的2倍為2a,再表示a與3的和a+3,再利用不等式表示即可;
(2)首先表示y的一半為y,再表示與5的差為y-5,然后表示非負數(shù)即可;
(3)x的3倍與1的和表示為3x+1,x的2倍與5的差表示為2x-5,然后再抓住關(guān)鍵詞“小于”列出不等式即可.
試題解析:(1)a的2倍為2a, a與3的和a+3,
由題意則有:2a<a+3;
(2)y的一半為y,再與5的差為y-5,
由題意則有: y5≥0,
(3)x的3倍與1的和表示為3x+1,x的2倍與5的差表示為2x-5,
由題意則有:3x+l<2x-5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在下面平面直角坐標(biāo)系中,已知A ,B ,C 三點.其中滿足.
(1)求的值;
(2)如果在第二象限內(nèi)有一點 ,請用含的式子表示四邊形的面積;
(3)在(2)的條件下,是否存在點,使四邊形的面積為△的面積的兩倍?若存在,求出點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c.
例如:因為23=8,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(3,27)=_______,(5,1)=_______,(2, )=_______.
(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:
設(shè)(3n,4n)=x,則(3n)x=4n,即(3x)n=4n
所以3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
請你嘗試運用上述這種方法說明下面這個等式成立的理由:(4,5)+(4,6)=(4,30)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?
(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)政府提出的“綠色發(fā)展·低碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查得知,購買3量男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.
(1)求男式單車和女式單車的單價;
(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,AD平分∠BAC交BC于點D,BC的中點為M,ME∥AD,交BA的延長線于點E,交AC于點F.
(1)求證:AE=AF;
(2)求證:BE=(AB+AC).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com