【題目】如圖,點P是正方形ABCD對角線AC上一動點,點E在射線BC上,且PB=PE,連接PD,O為AC中點.
(1)如圖1,當點P在線段AO上時,試猜想PE與PD的數(shù)量關系和位置關系,不用說明理由;
(2)如圖2,當點P在線段OC上時,(1)中的猜想還成立嗎?請說明理由;
(3)如圖3,當點P在AC的延長線上時,請你在圖3中畫出相應的圖形(尺規(guī)作圖,保留作圖痕跡,不寫作法),并判斷(1)中的猜想是否成立?若成立,請直接寫出結(jié)論;若不成立,請說明理由.
【答案】(1)PE與PD的數(shù)量關系和位置關系分別為:PE=PD,PE⊥PD;(2)成立,理由見解析;(3)成立,理由見解析.
【解析】
(1)根據(jù)點P在線段AO上時,利用三角形的全等判定可以得出PE⊥PD,PE=PD;
(2)利用三角形全等得出,BP=PD,由PB=PE,得出PE=PD,要證PE⊥PD;從三方面分析,當點E在線段BC上(E與B、C不重合)時,當點E與點C重合時,點P恰好在AC中點處,當點E在BC的延長線上時,分別分析即可得出;
(3)利用PE=PB得出P點在BE的垂直平分線上,利用垂直平分線的性質(zhì)只要以P為圓心,PB為半徑畫弧即可得出E點位置,利用(2)中證明思路即可得出答案.
(1)當點P在線段AO上時,
在△ABP和△ADP中,
∴△ABP≌△ADP,
∴BP=DP,
∵PB=PE,
∴PE=PD,
過點P做PM⊥CD于點M,作PN⊥BC,于點N,
∵PB=PE,PN⊥BE,
∴BN=NE,
∵BN=DM,
∴DM=NE,
在Rt△PNE與Rt△PMD中,
∵PD=PE,NE=DM,
∴Rt△PNE≌Rt△PMD,
∴∠DPM=∠EPN,
∵∠MPN=90°,
∴∠DPE=90°,
故PE⊥PD,
PE與PD的數(shù)量關系和位置關系分別為:PE=PD,PE⊥PD;
(2)∵四邊形ABCD是正方形,AC為對角線,
∴BA=DA,∠BAP=∠DAP=45°,
∵PA=PA,
∴△BAP≌△DAP(SAS),
∴PB=PD,
又∵PB=PE,
∴PE=PD.
(i)當點E與點C重合時,點P恰好在AC中點處,此時,PE⊥PD.
(ii)當點E在BC的延長線上時,如圖.
∵△ADP≌△ABP,
∴∠ABP=∠ADP,
∴∠CDP=∠CBP,
∵BP=PE,
∴∠CBP=∠PEC,
∴∠PEC=∠PDC,
∵∠1=∠2,
∴∠DPE=∠DCE=90°,
∴PE⊥PD.
綜合(i)(ii),PE⊥PD;
(3)同理即可得出:PE⊥PD,PD=PE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點,與y軸交于點C,過點B作BM⊥x軸,垂足為M,BM=OM,OB=2,點A的縱坐標為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接MC,求四邊形MBOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動點P從點B出發(fā),以每秒1個單位的速度,沿BA向點A移動;同時點Q從點C出發(fā),以每秒2個單位的速度,沿CB向點B移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤2),解答下列問題:
(1)當x為何值時,PQ⊥DQ;
(2)設△QPD的面積為S,用含x的函數(shù)關系式表示S;當x為何值時,S有最小值?并求出最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】日歷上的規(guī)律:表格是2020年元月的日歷,圖中的陰影區(qū)域是在日歷中選取的一塊九宮格.
(1)九宮格中,四個角的四個數(shù)之和與九宮格中央那個數(shù)有什么關系?
(2)請你自選一塊九宮格進行計算,看四個角上的四個數(shù)之和與九宮格中央那個數(shù)是否還有這種關系?
(3)試說明原理.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:當點C在線段AB上,AC=nAB時,我們稱n為點C在線段AB上的點值,記作dC﹣AB=n.如點C是AB的中點時,即AC=AB,則dC﹣AB=;反過來,當dC﹣AB=時,則有AC=AB.
(1)如圖1,點C在線段AB上,若dC﹣AB=,則= ;若AC=3BC,則dC﹣AB= ;
(2)如圖2,在△ABC中,∠ACB=90°,CD⊥AB于點D,AB=10cm,BC=6cm,點P、Q分別從點C和點B同時出發(fā),點P沿線段CA以2cm/s的速度向點A運動,點Q沿線段BC以1cm/s的速度向點C運動,當點P到達點A時,點P、Q均停止運動,連接PQ交CD于點E,設運動時間為ts,dP﹣CA+dQ﹣CB=m.
①當≤m≤時,求t的取值范圍;
②當dP﹣CA=,求dE﹣CD的值;
③當dE﹣CD=時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】童星玩具廠工人的工作時間為:每月22天,每天8小時.工資待遇為:按件計酬,多勞多得,每月另加福利工資500元,按月結(jié)算.該廠生產(chǎn)A、B兩種產(chǎn)品,工人每生產(chǎn)一件A種產(chǎn)品可得報酬1.50元,每生產(chǎn)一件B種產(chǎn)品可得報酬2.80元.該廠工人可以選擇A、B兩種產(chǎn)品中的一種或兩種進行生產(chǎn).工人小李生產(chǎn)1件A產(chǎn)品和1件B產(chǎn)品需35分鐘;生產(chǎn)3件A產(chǎn)品和2件B產(chǎn)品需85分鐘.
(1)小李生產(chǎn)1件A產(chǎn)品需要 分鐘,生產(chǎn)1件B產(chǎn)品需要 分鐘.
(2)求小李每月的工資收入范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC.
(1)試用直尺和圓規(guī)在AC上找一點D,使AD=BD(不寫作法,但需保留作圖痕跡).
(2)在(1)中,連接BD,若BD=BC,求∠A的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com