【題目】已知:如圖,等邊三角形ABC中,D、E分別是BC、AC上的點(diǎn),且AE=CD,
(1)求證:AD=BE
(2)求:∠BFD的度數(shù).
【答案】(1)見(jiàn)解析;(2)60°.
【解析】
(1)根據(jù)等邊三角形各邊長(zhǎng)相等的性質(zhì)可得AB=AC,易證△ABE≌△CAD可得AD=BE;
(2)根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ABE=∠CAD,進(jìn)而根據(jù)∠BFD=∠BAD+∠ABE即可求∠BFD的度數(shù).
(1)證明:∵△ABC是等邊三角形,
∴∠BAC=∠C=60°,AB=CA,
在△ABE和△CAD中 ,
∴△ABE≌△CAD(SAS),
∴AD=BE(全等三角形對(duì)應(yīng)邊相等);
(2)∵△ABE≌△CAD(已證),
∴∠ABE=∠CAD(全等三角形對(duì)應(yīng)角相等),
又∵∠BFD=∠BAD+∠ABE,
∴∠BFD=∠BAD+∠CAD=∠BAC,
又∠BAC=60°,
∴∠BFD=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線AB與CD相交于點(diǎn)O,且∠AOD=90°,現(xiàn)將一個(gè)直角三角尺的直角頂點(diǎn)放在點(diǎn)O處,把該直角三角尺OEF繞著點(diǎn)O旋轉(zhuǎn),作射線OH平分∠AOE.
(1)如圖1所示,當(dāng)∠DOE=20°時(shí),∠FOH的度數(shù)是 .
(2)若將直角三角尺OEF繞點(diǎn)O旋轉(zhuǎn)至圖2的位置,試判斷∠FOH和∠BOE之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)若再作射線OG平分∠BOF,試求∠GOH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為A(-4,5),C(-1,3).
(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格內(nèi)作出x軸、y軸;
(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(3)寫(xiě)出點(diǎn)B1的坐標(biāo)并求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,AB=6cm,BC=8cm,對(duì)角線AC,BD交于點(diǎn)0.點(diǎn)P從點(diǎn)A出發(fā),沿方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動(dòng),速度為1cm/s;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).連接PO并延長(zhǎng),交BC于點(diǎn)E,過(guò)點(diǎn)Q作QF∥AC,交BD于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6),解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),△AOP是等腰三角形?
(2)設(shè)五邊形OECQF的面積為S(cm2),試確定S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使S五邊形S五邊形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(4)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使OD平分∠COP?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明用尺規(guī)作圖作△ABC的邊AC上的高BH,作法如下:
① 分別以點(diǎn)D、E為圓心,大于DE的一半的長(zhǎng)度為半徑作弧,兩弧交于點(diǎn)F;
② 作射線BF,交邊AC于點(diǎn)H;
③ 以B為圓心,BK的長(zhǎng)為半徑作弧,交直線AC于點(diǎn)D和E;
④ 取一點(diǎn)K,使K和B在AC的兩側(cè);
⑤ 所以BH就是所求作的高。
正確的作圖順序應(yīng)該是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)、、,請(qǐng)回答如下問(wèn)題:
(1)在坐標(biāo)系內(nèi)描出點(diǎn)的位置:
(2)求出以三點(diǎn)為頂點(diǎn)的三角形的面積;
(3)在軸上是否存在點(diǎn),使以三點(diǎn)為頂點(diǎn)的三角形的面積為10,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A D C F在同一直線上,AB=DE,AD=CF,添加下列條件后,仍不能判斷△ABC≌△DEF的是 ( )
A. BC=EFB. ∠A=∠EDFC. AB∥DED. ∠BCA=∠F
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= ,PD= .
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說(shuō)明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個(gè)運(yùn)動(dòng)過(guò)程中,求出線段PQ中點(diǎn)M所經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O在直線AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OE與OC重合,然后繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)OE與OB重合時(shí)停止旋轉(zhuǎn).
(1)當(dāng)OD在OA與OC之間,且∠COD=20°時(shí),則∠AOE=______;
(2)試探索:在△ODE旋轉(zhuǎn)過(guò)程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)說(shuō)明理由;
(3)在△ODE的旋轉(zhuǎn)過(guò)程中,若∠AOE=7∠COD,試求∠AOE的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com