【題目】如圖1,在矩形ABCD中,AB2,AD,ECD邊上的中點,PBC邊上的一點,且BP2CP

1)求證:∠AED=∠BEC;

2)判斷EB是否平分∠AEC,并說明理由;

3)如圖2,連接EP并延長交AB的延長線于點F,連接AP,不添加輔助線,PFB可以由都經(jīng)過P點的兩次變換與PAE組成一個等腰三角形,直接寫出兩種方法(指出對稱軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和平移距離).

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】

1)由矩形的性質(zhì)得出ADBC,CDAB2,∠D=∠C90°,由中點的定義得出DECECD1,再由SAS證明ADE≌△BCE,即可得出結(jié)論;

2)用銳角三角函數(shù)求出∠AED60°,得出∠BEC=∠AED60°,即可得出結(jié)論;

3)先判斷出AEP≌△FBP,即可得出結(jié)論.

1)證明:∵四邊形ABCD是矩形,

ADBC,CDAB2,∠D=∠C90°

ECD邊上的中點,∴DECECD1

ADEBCE中,,

∴△ADE≌△BCESAS),

∴∠AED=∠BEC;

2)解:EB平分∠AEC,理由如下:

RtADE中,ADDE1,

tanAED

∴∠AED60°,

∴∠BEC=∠AED60°,

∴∠AEB180°﹣∠AED﹣∠BEC60°=∠BEC,

EB平分∠AEC

3)解:∵BP2CP,BC,

CP,BP

RtCEP中,tanCEP,

∴∠CEP30°,

∴∠BEP30°,

∴∠AEP90°,

CDAB

∴∠F=∠CEP30°,

RtABP中,tanBAP,

∴∠PAB30°,

∴∠EAP30°=∠F=∠PAB

CBAF,

APFP,∠FBP90°=∠AEP,

AEPFBP中,,

∴△AEP≌△FBPAAS),

∴△PFB能由都經(jīng)過P點的兩次變換與PAE組成一個等腰三角形,

變換的方法為:①將BPF繞點P順時針旋轉(zhuǎn)120°EPA重合,再沿PE折疊;

②將BPF以過點P垂直于BC的直線折疊,再繞點P逆時針旋轉(zhuǎn)60°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(3分)如圖,OA在x軸上,OB在y軸上,OA=8,AB=10,點C在邊OA上,AC=2,P的圓心P在線段BC上,且P與邊AB,AO都相切若反比例函數(shù))的圖象經(jīng)過圓心P,則k=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,校園內(nèi)有兩幢高度相同的教學樓AB,CD,大樓的底部B,D在同一平面上,兩幢樓之間的距離BD長為24米,小明在點E(B,E,D在一條直線上)處測得教學樓AB頂部的仰角為45°,然后沿EB方向前進8米到達點G處,測得教學樓CD頂部的仰角為30°.已知小明的兩個觀測點F,H距離地面的高度均為1.6米,求教學樓AB的高度AB長.(精確到0.1米)參考值:≈1.41,≈1.73.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知△ABC,任取一點O,連接AO,BO,CO,并取它們的中點DE,F,得△DEF,則下列說法:①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;③△ABC與△DEF的周長比為12;④△ABC與△DEF的面積比為41. 正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在宣傳民族團結(jié)活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學生從中選擇并且只能選擇一種最喜歡的,學校就宣傳形式對學生進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.

請結(jié)合圖中所給信息,解答下列問題:

(1)本次調(diào)查的學生共有_____人;

(2)補全條形統(tǒng)計圖;

(3)該校共有1200名學生,請估計選擇唱歌的學生有多少人?

(4)七年一班在最喜歡器樂的學生中,有甲、乙、丙、丁四位同學表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學中隨機選出兩名同學參加學校的器樂隊,請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若拋物線的頂點與x軸的兩個交點構(gòu)成的三角形是直角三角形,則這種拋物線被稱為:“直角拋物線”.如圖,直線lyx+b經(jīng)過點M(0,),一組拋物線的頂點B1(1,y1),B2(2,y2)B3(3,y3),…Bn(n,yn) (n為正整數(shù)),依次是直線l上的點,第一個拋物線與x軸正半軸的交點A1(x1,0)A2(x2,0),第二個拋物線與x軸交點A2(x2,0)A3(x30),以此類推,若x1d(0d1),當d_____時,這組拋物線中存在直角拋物線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(m≠0)的圖象經(jīng)過點(1,4),一次函數(shù)y=﹣x+b的圖象經(jīng)過反比例函數(shù)圖象上的點Q(﹣4,n).

(1)求反比例函數(shù)與一次函數(shù)的表達式;

(2)一次函數(shù)的圖象分別與x軸、y軸交于A、B兩點,與反比例函數(shù)圖象的另一個交點為P點,連結(jié)OP、OQ,求OPQ的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓D的直徑AB4,線段OA7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m

1)當半圓D與數(shù)軸相切時,m 

2)半圓D與數(shù)軸有兩個公共點,設(shè)另一個公共點是C

直接寫出m的取值范圍是 

BC2時,求△AOB與半圓D的公共部分的面積.

3)當△AOB的內(nèi)心、外心與某一個頂點在同一條直線上時,求tanAOB的值.

查看答案和解析>>

同步練習冊答案