【題目】如圖在△ABC中,BO,CO分別平分∠ABC,∠ACB,交于O,CE為外角∠ACD的平分線,BO的延長(zhǎng)線交CE于點(diǎn)E,記∠BAC=∠1,∠BEC=∠2,則以下結(jié)論①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正確的是( )
A. ①②③ B. ①③④ C. ①④ D. ①②④
【答案】C
【解析】
根據(jù)三角形內(nèi)角和定理以及三角形角平分線的定義可得∠BOC=90°+∠1,再結(jié)合三角形外角性質(zhì)可得∠ECD=∠OBC+∠2,從而可得∠BOC=90°+∠2,據(jù)此即可進(jìn)行判斷.
∵BO,CO分別平分∠ABC,∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∵∠ABC+∠ACB+∠1=180°,
∴∠ABC+∠ACB=180°-∠1,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠1)=90°-∠1,
∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-∠1)=90°+∠1,
∵∠ACD=∠ABC+∠1,CE平分∠ACD,
∴∠ECD=∠ACD=(∠ABC+∠1),
∵∠ECD=∠OBC+∠2,
∴∠2=∠1,即∠1=2∠2,
∴∠BOC=90°+∠1=90°+∠2,
∴①④正確,②③錯(cuò)誤,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A. 不帶根號(hào)的數(shù)不是無(wú)理數(shù)
B. 的立方根是±2
C. 絕對(duì)值等于的實(shí)數(shù)是
D. 每個(gè)實(shí)數(shù)都對(duì)應(yīng)數(shù)軸上一個(gè)點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測(cè)試,該班男、女生每天能加工的零件數(shù)分別為50個(gè)和45個(gè),為保證他們每天加工的零件總數(shù)不少于1460個(gè),那么至少要招錄多少名男學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上一點(diǎn),且BC=EC,CF⊥BE交AB于點(diǎn)F,P是EB延長(zhǎng)線上一點(diǎn),下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正確結(jié)論的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F.求證:四邊形DEBF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;
(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間有何關(guān)系?說(shuō)明理由.
(3)若點(diǎn)P在Rt△ABC斜邊BA的延長(zhǎng)線上運(yùn)動(dòng)(CE<CD),則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過(guò)點(diǎn)C、A、A′,求此拋物線的解析式;
(2)點(diǎn)M時(shí)第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問(wèn):當(dāng)點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);
(3)若P為拋物線上一動(dòng)點(diǎn),N為x軸上的一動(dòng)點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時(shí),求點(diǎn)P的坐標(biāo),當(dāng)這個(gè)平行四邊形為矩形時(shí),求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,AB=6,BC=8,E,F(xiàn)分別是AB,BC的中點(diǎn),AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩直角邊OA,OB分別在x軸,y軸的正半軸上(OA<OB),且OA,OB的長(zhǎng)分別是一元二次方程x2﹣14x+48=0的兩個(gè)根,線段AB的垂直平分線CD交AB于點(diǎn)C,分別交x軸,y軸于點(diǎn)D,E.
(1)直接寫(xiě)出點(diǎn)A、B的坐標(biāo):A , B;
(2)求線段AD的長(zhǎng);
(3)已知P是直線CD上一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線AB上一個(gè)動(dòng)點(diǎn),則在坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使得以點(diǎn)C、P、Q、M為頂點(diǎn)的四邊形是以5為邊長(zhǎng)的正方形?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com