【題目】中,,以為直徑的于點,交于點,延長線上一點,且,連接

1)求證:的切線;

2)若,,求的長.

【答案】1)見解析 (212

【解析】

1)連接AD,求出∠PBC=∠BAD,求出∠ABP=90°,根據(jù)切線的判定得出即可;
2)解直角三角形求出BD,求出BC,根據(jù)勾股定理求出AD,根據(jù)三角形ABC的面積=即可求出BE的長.

1)證明:連接AD

AB為直徑,

∴∠ADB=90°,

AB=AC,

,

∴∠PBC=∠BAD

∵∠BAD+∠ABD=90°

∴∠PBC+∠ABD=90°

ABBP

BP是⊙O的切線.

2)解:由(1)知∠PBC=∠BAD,∠ADB=90°,

,

RtABD中,∵,AB=15

,解得

∵∠ADB=90°,AB=AC

AB為直徑,

∴∠AEB=90°

BE=12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的直徑,C上一點,D的中點,延長線上一點,AEA,ACBD交于點H,與OE交于點F,連結(jié)EC

1)求證:EC的切線;

2)若DH=9,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某茶具店購進了A、B兩種不同的茶具,1A種茶具和2B種茶具共需250元;3A種茶具和4B種茶具共需600元.

1)求A、B兩種茶具每套的進價分別是多少元?

2)由于茶具暢銷,茶具店準(zhǔn)備再購進A、B兩種茶具共80套,但這次進貨時,工廠對A種茶具每套進價提高了8%,而B種茶具每套按第一次進價的八折,若茶具店本次進貨總錢數(shù)不超過6240元,則最多可進A種茶具幾套?

3)若銷售一套A種茶具可獲利30元,銷售一套B種茶其可獲利20元,在(2)的條件下,如何進貨可使本次購進茶具獲利最多?最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市用3 000元購進某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9 000元購進該種干果,但這次的進價比第一次的進價提高了20%,購進干果數(shù)量比第一次的2倍還多300 kg.如果超市按9/kg的價格出售,當(dāng)大部分干果售出后,余下的600 kg按售價的八折售完.

(1)該種干果第一次的進價是多少?

(2)超市銷售這種干果共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,延長至點,使,連接

1)求證:四邊形是矩形;

2)連接于點,連接,若,,請你直接寫出的值(不要求寫過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點,將ABE沿BE折疊使點A落在點G處,延長BGCD于點F,連接EF,若CF1,DF2,則BC的長是(  。

A.3B.C.5D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線y=﹣x+2x軸,y軸分別交于AB兩點,以A為頂點的拋物線經(jīng)過點B,點P是拋物線上一點,連接OP,AP

1)求拋物線的解析式;

2)若AOP的面積是3,求P點坐標(biāo);

3)如圖②,動點M,N同時從點O出發(fā),點M1個單位長度/秒的速度沿x軸正半軸方向勻速運動,點N個單位長度/秒的速度沿y軸正半軸方向勻速運動,當(dāng)其中一個動點停止運動時,另一個動點也隨之停止運動,過點NNEx軸交直線AB于點E.若設(shè)運動時間為t秒,是否存在某一時刻,使四邊形AMNE是菱形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD中,點O是對角線AC的中點,點P是線段AO上(不與點A,O重合)的一個動點,過點PPEPBPE交邊CD于點E

1)求證:PEPB;

2)如圖2,若正方形ABCD的邊長為2,過點EEFAC于點F,在點P運動的過程中,PF的長度是否發(fā)生變化?若不變,試求出這個不變的值;若變化,請說明理由;

3)用等式表示線段PC,PA,CE之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以RtABCAC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點FBC的中點,連接EFAD

1)求證:EF是⊙O的切線;

2)若⊙O的半徑為2,∠EAC60°,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案