【題目】小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機(jī)做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.
(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?
(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進(jìn)行兩局游戲便能確定贏家的概率.
【答案】(1),(2)
【解析】
解:(1)畫樹狀圖得:
∵總共有9種等可能情況,每人獲勝的情形都是3種,
∴兩人獲勝的概率都是。
(2)由(1)可知,一局游戲每人勝、負(fù)、和的機(jī)會均等,都為.任選其中一人的情形可畫樹狀圖得:
∵總共有9種等可能情況,當(dāng)出現(xiàn)(勝,勝)或(負(fù),負(fù))這兩種情形時,贏家產(chǎn)生,
∴兩局游戲能確定贏家的概率為:。
(1)根據(jù)題意畫出樹狀圖或列表,由圖表求得所有等可能的結(jié)果與在一局游戲中兩人獲勝的情況,利用概率公式即可求得答案。
(2)因為由(1)可知,一局游戲每人勝、負(fù)、和的機(jī)會均等,都為.可畫樹狀圖,由樹狀圖求得所有等可能的結(jié)果與進(jìn)行兩局游戲便能確定贏家的情況,然后利用概率公式求解即可求得答案。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,點M是第二象限內(nèi)拋物線上一點,BM交y軸于N.
(1)求點A、B的坐標(biāo);
(2)若BN=MN,且S△MBC=,求a的值;
(3)若∠BMC=2∠ABM,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解黔東南州某縣2013屆中考學(xué)生的體育考試得分情況,從該縣參加體育考試的4000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體育考試成績作樣本分析,得出如下不完整的頻數(shù)統(tǒng)計表和頻數(shù)分布直方圖.
成績分組 | 組中值 | 頻數(shù) |
25≤x<30 | 27.5 | 4 |
30≤x<35 | 32.5 | m |
35≤x<40 | 37.5 | 24 |
40≤x<45 | a | 36 |
45≤x<50 | 47.5 | n |
50≤x<55 | 52.5 | 4 |
(1)求a、m、n的值,并補(bǔ)全頻數(shù)分布直方圖;
(2)若體育得分在40分以上(包括40分)為優(yōu)秀,請問該縣中考體育成績優(yōu)秀學(xué)生人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AP,CP分別平分∠BAC,∠ACD,∠P=90°,設(shè)∠BAP=α.
(1)用α表示∠ACP;
(2)求證:AB∥CD;
(3)若AP∥CF,求證:FC平分∠DCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形中,,,是對角線,于點,于點
(1)如圖1,求證:
(2)如圖2,當(dāng)時,連接、,在不添加任何輔助線的情況下,請直接寫出圖2中的四個三角形,使寫出的每個三角形的面積都等于四邊形面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑;
(3)在(2)的條件下,若點B等分半圓CD,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為軸上一個動點,
(1)如圖1,當(dāng),且按逆時針方向排列,求點的坐標(biāo).
(圖1)
(2)如圖2,當(dāng),且按順時針方向排列,連交軸于,求證:
(圖2)
(3)如圖3,m>2,且按順時針方向排列,若兩點關(guān)于直線的的對稱點,畫出圖形并用含的式子表示的面積
圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n與x軸正半軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)利用直尺和圓規(guī),作出拋物線y=x2+mx+n的對稱軸(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若△OBC是等腰直角三角形,且其腰長為3,求拋物線的解析式;
(3)在(2)的條件下,點P為拋物線對稱軸上的一點,則PA+PC的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點.∠AEF=90°,且EF交正方形外角∠DCG的平分線CF于點F,求證:AE=EF.
經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:
(1)小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結(jié)論“AE=EF”仍然成立。你認(rèn)為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com