【題目】如圖所示是一個(gè)直角三角形的苗圃,由一個(gè)正方形花壇和兩塊直角三角形的草皮組成.如果兩個(gè)直角三角形的兩條斜邊長(zhǎng)分別為4米和6米,則草皮的總面積為( 。┢椒矫祝

A. 3 B. 9 C. 12 D. 24

【答案】C

【解析】

先根據(jù)相似三角形的判定定理得出AMB∽△CBE,故可得出的值,設(shè)CEx,則BC2x,在RtCBE中根據(jù)勾股定理求出x的值,故可得出CE,ABBC,AM2AB的值,再根據(jù)S草皮SCBE+SAMB,即可得出結(jié)論.

解:∵△MDE是直角三角形,四邊形ABCD是正方形,

∴∠MAB=∠BCE90°,∠M+ABM90°,∠ABM+CBE90°,

∴∠M=∠CBE,

∴△AMB∽△CBE,

,

MB6BE4,

,

ABBC,

,

設(shè)CE2x,則BC3x,在RtCBE中,BE2BC2+CE2,即42=(3x2+2x2,解得x

CE,ABBC,AMAB

S草皮SCBE+SAMB××+××12

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=6,BC=10,ABAC,點(diǎn)P從點(diǎn)B出發(fā)沿著B→A→C的路徑運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā)沿著A→C→D的路徑以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,y=PQ2,下列圖象中大致反映yx之間的函數(shù)關(guān)系的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為90元的新商品,在商場(chǎng)試銷時(shí)發(fā)現(xiàn):銷售單價(jià)與每天銷售量之間滿足如圖所示的關(guān)系.

求出yx之間的函數(shù)關(guān)系式;

寫出每天的利潤(rùn)W與銷售單價(jià)x之間的函數(shù)關(guān)系式,并求出售價(jià)定為多少時(shí),每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在某海上觀測(cè)點(diǎn)B處觀測(cè)到位于北偏東30°方向有一艘救船A,搜救船A最大航速50海里/時(shí),AB52海里,在位于觀測(cè)點(diǎn)B的正東方向,搜救船A的東南方向有一失事漁船C,由于當(dāng)天正值東南風(fēng),失事漁船C2海里/時(shí)的速度向西北方向漂移,若不考慮大風(fēng)對(duì)搜救船A的航線和航速的影響,求失事漁船獲救的最快時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是一塊直角三角板,且∠C90°,∠A30°,現(xiàn)將圓心為點(diǎn)O的圓形紙片放置在三角板內(nèi)部,將圓形紙片沿著三角板的內(nèi)部邊緣滾動(dòng)1周,回到起點(diǎn)位置時(shí)停止,若BC7+2,圓形紙片的半徑為2,求圓心O運(yùn)動(dòng)的路徑長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是用鋼絲制作的一個(gè)幾何探究工具,其中△ABC內(nèi)接于⊙G,AB是⊙G的直徑,AB=6,AC=2.現(xiàn)將制作的幾何探究工具放在平面直角坐標(biāo)系中(如圖2),然后點(diǎn)A在射線OX上由點(diǎn)O開始向右滑動(dòng),點(diǎn)B在射線OY上也隨之向點(diǎn)O滑動(dòng)(如圖3),當(dāng)點(diǎn)B滑動(dòng)至與點(diǎn)O重合時(shí)運(yùn)動(dòng)結(jié)束. 在整個(gè)運(yùn)動(dòng)過(guò)程中,點(diǎn)C運(yùn)動(dòng)的路程是( 。

A. 4 B. 6 C. 4﹣2 D. 10﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=9x26ax+a2b

1)當(dāng)b=3時(shí),二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(﹣1,4

①求a的值;

②求當(dāng)a≤x≤b時(shí),一次函數(shù)y=ax+b的最大值及最小值;

2)若a≥3,b1=2a,函數(shù)y=9x26ax+a2b在﹣xc時(shí)的值恒大于或等于0,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案